Chapter 16 – The Elements: The *d*-Block

- The *d*-Block Elements and Their Compounds
- Select Elements: A Survey
- Coordination Compounds
- The Electronic Structure of Complexes

Location on Periodic Table

Transition metals, are located in groups 3 through 11. They are called transition metals because they transition between the highly reactive s block metals and the much less reactive metals of group 12 and the p block.

Shape of *d* Orbitals

The shape of the d orbitals affect the properties of transition metals. The d orbital lobes are far apart and so only weakly repel each other. The d orbitals have low electron density near the nucleus therefore are not very effective at shielding.

Trends in Atomic Radii

The shape of the d orbitals affect the properties of transition metals. The d orbital lobes are far apart and thus only weakly repel each other. The d orbitals have low electron density near the nucleus therefore are not very effective at shielding.

Oxidation States

Most *d*-block metals have more that one oxidation state other than 0. Elements close to the center of the row have the widest rage of oxidation numbers.

Select Elements: A Survey

Scandium Through Nickel

TABLE 16.1 Properties of the *d*-Block Elements Scandium Through Nickel

Ζ	Name	Symbol	Valence electron configuration	Melting point (°C)	Boiling point (°C)	Density (g·cm ⁻³)
21	scandium	Sc	$3d^{1}4s^{2}$	1540	2800	2.99
22	titanium	Ti	$3d^24s^2$	1660	3300	4.55
23	vanadium	V	$3d^34s^2$	1920	3400	6.11
24	chromium	Cr	$3d^54s^1$	1860	2600	7.19
25	manganese	Mn	$3d^54s^2$	1250	2120	7.47
26	iron	Fe	$3d^{6}4s^{2}$	1540	2760	7.87
27	cobalt	Co	$3d^{7}4s^{2}$	1494	2900	8.80
28	nickel	Ni	$3d^84s^2$	1455	2150	8.91

As you go across the first period of *d*-metals from scandium through nickel you can see there are similarities in the melting and boiling points. In addition, their densities increase as you go across the period.

Select Elements: A Survey

Scandium Through Nickel

	Scandium (Sc)	Titanium (Ti)	Vanadium (V)	Chromium (Cr)
Facts	• Reacts vigorously with water	 Resistant to corrosion (protective oxide skin) Requires strong reducing agent for extraction from, its ores 	• Vanadium compounds come in a wide range of color due to its many oxidation states	• Corrosion resistant
Uses	Few usesNot essential to life	 Jet enginesDental applications	 Makes tough steels for automobile and truck springs Glazes for ceramics 	Stainless steelChrome plating

Vanadium, V; 5B(5)

Chromium, Cr; 6B(6)

Select Elements: A Survey

Scandium Through Nickel

	Manganese (Mn)	Iron (Fe)	Cobalt (Co)	Nickel (Ni)
Facts	• Not as corrosion resistant as chromium but more corrosion resistant than iron	 Most widely used d metal Most abundant element on earth The second most abundant metal in the earths crust (after aluminum) 		 70% if the western world's nickel comes from ore that was brought close to the earth surface nearly 2 billion year ago by the violent impact of a huge meteor
Uses	• Alloying with steel	 Main component in steel Essential to life 	 Alloying with steal Used to make permanent magnets found in speakers Essential to life 	 Used to make stainless steal Nickel is alloyed with copper to make nickel coins

Manganese, Mn; 7B(7)

Iron, Fe; 8B(8)

Cobalt, Co; 8B(9)

Nickel, Ni; 8B(10)

Coordination Compounds

Common Ligands

TABLE 16.4 Common Ligands

Formula	Name
Neutral ligands	
H ₂ O	aqua
NH ₃	ammine
NO	nitrosyl
CO	carbonyl
NH ₂ CH ₂ CH ₂ NH ₂	ethylenediamine (en)*
NH ₂ CH ₂ CH ₂ NHCH ₂ CH ₂ NH ₂	diethylenetriamine (dien) [†]
Anionic ligands	
F-	fluoro
Cl ⁻	chloro
Br ⁻	bromo
I-	iodo
OH-	hydroxo
O ²⁻	oxo
CN ⁻	cyano (as M-CN)
NC ⁻	isocyano (as M-NC)
SCN-	thiocyanato (as M-SCN)
NCS ⁻	isothiocyanato (as M-NCS)
NO ₂ ⁻	nitrito (as M—ONO)
NO_2^{2-}	nitro (as $M - NO_3$)
CO_{2}^{2-}	carbonato
$C_{2}O_{4}^{2-}$	oxalato (ox)*
-0^{-1} 0^{-1}	ethylenediaminetetraacetato (edta)
\mathbf{N}	
\dot{C} - CH ₂ H ₂ C - C	
0'' $N - CH - CH - N$ $0'$	
O_{N} / $CH_2 - CH_2 - N$ O	
$C - CH_2$ $H_2C - C$	
-0	
0 0	16
504~	sulfato

*Bidentate (attaches to two sites). [†]Tridentate (attaches to three sites). [‡]Hexadentate (attaches to six sites).

Crystal Field Theory

In crystal field theory one assumes that the ligands can be represented by negative point charges and that the metal is a positive point charge located at the center of the system. One then examines how these negative point charges interact with the d orbitals

Spectrochemical Series

11

Different ligands affect the *d* orbitals of a given metal atom or ion to different degrees and thus produce different values of the ligand field splitting. The spectrochemical series arranges ligands according to the relative magnitudes of the ligand field splitting that they produce.

Electron Configurations

TABLE 16.5 Electron Configurations of d^n Complexes

Number of	Configuration			
d-electrons	Octahedral complexes	Tetrahedral complexe		
d^1	t_{2g}^{-1}	e^1		
d^2	t_{2g}^{2}	e^2		
d^3	t_{2g}^{3}	$e^{2}t_{2}^{1}$		
	Low spin High spin			
d^4	$t_{2g}^{4} t_{2g}^{3} e_{g}^{1}$	$e^{2}t_{2}^{2}$		
d^5	t_{2g}^{5} $t_{2g}^{3}e_{g}^{2}$	$e^{2}t_{2}^{3}$		
d^6	$t_{2g}^{6} t_{2g}^{4} e_{g}^{2}$	$e^{3}t_{2}^{3}$		
d^7	$t_{2g}^{6}e_{g}^{1}$ $t_{2g}^{5}e_{g}^{2}$	$e^{4}t_{2}^{3}$		
d^8	$t_{2g}^{6}e_{g}^{2}$	$e^{4}t_{2}^{4}$		
d^9	$t_{2g}^{6}e_{g}^{3}$	$e^4t_2^{5}$		
d^{10}	$t_{2g}^{6}e_{g}^{4}$	$e^4 t_2^{6}$		

Ligand Field Theory

Only one orbital is considered for the ligands. 9 orbitals come from the *d*-metal, 6 orbitals come from the ligands making a total of 15 molecular orbitals. The electrons from the ligands fill up all of the bonding orbitals, leaving the electrons from the metal to fill the nonbonding and antibonding orbitals.

Ligand Field Theory

Weak Field Ligand

If the t_{2g} orbital is closer in energy to the π bonding orbital, the two orbitals will interact and the electron in the filled π orbitals will enter the lower energy molecular orbital therefore the electrons in the *d*-metal will have to occupy the higher energy molecular orbital which will decreases the octahedral field splitting. This is what happens for weak field ligands.

Ligand Field Theory

15

Strong Field Ligand

If however the t_{2g} orbitals are closer in energy to the π antibonding orbital when the two orbitals interact, there are no electrons from the ligand to go into the lower energy molecular orbital. Therefore the electrons in the metal can enter the lower energy orbital and the octahedral field splitting will increase. This is what happens for strong field ligands.