The *d*-Block Elements and Their Compounds

Trends in Atomic Radii

Solution:

Cd (149) > Pb (138) > Mo (136) > Ru (134) > Zn (133) Note units of atomic radii are in pm

Ε

The *d*-Block Elements and Their Compounds

Predicting Other Trends

Solution:

Ionization Energy: The minimum energy required to remove an electron from the ground state.

Going across the *d*-block the effective nuclear charge increases therefore it is harder to remove an electron and the ionization energy goes up. However going down a period the effective nuclear charge decreases and the ionization energy also decreases.

Therefore the ionization energy increases from left to right across a period and decreases going down a period A

Naming Compounds

Solution:

Na[CoCl₃(NH₃)₃] Cation (Na⁺) sodium Anion ($[CoCl_3(NH_3)_3]^-$) The ligands are Cl^{-} and NH_{3} $Cl^{-} \rightarrow chloro \rightarrow (3) \rightarrow trichloro$ $NH_3 \rightarrow ammine \rightarrow (3) \rightarrow triammine$ triamminetrichloro $[CoCl_3(NH_3)_3]^2 \rightarrow$ Therefore Co has charge of $+2 \rightarrow$ cobaltate(II) triamminetrichlorocobaltate(II) Entire Name: sodium triamminetrichlorocobaltate(II) Α

Naming Compounds

Solution:

Potassium hexacyanoferrate(II)

Cation (Potassium)

 K^+

Anion (hexacyanoferrate(II))

Hexacyano: cyano = CN^- hexa = 6 Ferrate(II): Fe²⁺ [Fe(CN)₆]⁴⁻ To balance charge 4K⁺ are needed Entire Formula: K₄[Fe(CN)₆]

Ε

Isomers

Solution:

A chiral complex is a complex that is not identical to it mirror image

 $1 \xrightarrow{C}_{B} \xrightarrow{A}_{C} \xrightarrow{B}_{C} \xrightarrow{A}_{B} \xrightarrow{C}_{C}$ Rotate mirror image a ¹/₄ of a turn and it is identical to non mirror image

You can not rotate the mirror images of complexes 2, 3, or 4 so that they are identical to their non mirror image Α

Isomers

Solution:

Enantiomeric pairs are a chiral complex and its mirror image Need to have same number and types of ligands

The Electronic Structure of Complexes

Crystal Field Theory

