16.2 Five *d*-block elements can be found in Appendix 2B with positive standard potentials. They are

Ag,
$$E^{\circ} = +0.80 \text{ V}$$

Cu,
$$E^{\circ} = +0.34 \text{ V}$$

Au,
$$E^{\circ} = +1.40 \text{ V}$$

Pt,
$$E^{\circ} = +1.20 \text{ V}$$

$$Hg, E^{\circ} = +0.79 \text{ V}$$

- 16.6 (a) Co is very slightly higher.
 - (b) Fe
 - (c) Cr is slightly higher.
 - (d) Because silver is larger, one expects it to have a lower first ionization potential, which is the case (731 kJ·mol⁻¹).
 - (e) One might expect the third row transition metal to have a lower first ionization energy; however, due to the lanthanide contraction, the ionization potential for silver is less than for gold (731 kJ·mol⁻¹ vs. 890 kJ·mol⁻¹).
- **16.44** (a) 3; (b) 6; (c) 6; (d) 9; (e) 4; (f) 6
- 16.58 Cu(II) compounds contain one unpaired electron ($3d^9$ configuration); Cu(I) compounds have no unpaired electrons ($3d^{10}$). Therefore, Cu(II) compounds may be colored and paramagnetic, but Cu(I) compounds are not.

16.60 (a)
$$\Delta_0 = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s}^{-1})(3.00 \times 10^8 \text{ m} \cdot \text{s}^{-1})}{295 \times 10^{-3} \text{ m}} = 6.75 \times 10^{-19} \text{J}$$

(b)
$$\Delta_0 = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s}^{-1})(3.00 \times 10^8 \text{ m} \cdot \text{s}^{-1})}{435 \times 10^{-9} \text{ m}} = 4.75 \times 10^{-19} \text{J}$$

(c)
$$\Delta_0 = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34} \text{ J} \cdot \text{s}^{-1})(3.00 \times 10^8 \text{ m} \cdot \text{s}^{-1})}{540 \times 10^{-9} \text{ m}} = 3.68 \times 10^{-19} \text{J}$$

The above numbers can be multiplied by 6.022×10^{23} to obtain the energies in kJ·mol⁻¹.

(a)
$$6.74 \times 10^{-19} \text{ J} \times 6.022 \times 10^{23} \text{ mol}^{-1} = 4.06 \times 10^5 \text{ J} \cdot \text{mol}^{-1}$$

= $406 \text{ kJ} \cdot \text{mol}^{-1}$

16.80 A diamagnetic substance has no unpaired electrons and is weakly pushed out of a magnetic field. Paramagnetism refers to the presence of unpaired electrons in a substance. A paramagnetic compound is pulled toward a magnetic field. Ferromagnetism is an extensive property that occurs when the unpaired electrons on a number of metal ions within a sample align with each other. Paramagnetism is a property of any substance with unpaired electrons, whereas ferromagnetism is a property of certain substances that can become permanently magnetized. Their spins become aligned, and this alignment can be retained even in the absence of a magnetic field. In a paramagnetic substance, the alignment is lost when the magnetic field is removed. Antiferromagnetism is the opposite of ferromagnetism—it occurs when the unpaired electrons on a number of metal ions within a sample pair between the metal ions, so that the overall magnetism cancels.

16.82
$$n ext{ (H2O)} = 2.387 ext{ g H2O} \times \frac{1 ext{ mol H2O}}{18.016 ext{ g H2O}} = 0.1324 ext{ mol}$$

 $n ext{ (Cl2)} = 1.57 ext{ g Cl2} \times \frac{1 ext{ mol Cl2}}{70.90 ext{ g Cl3}} = 0.0221 ext{ mol Cl2}$

degrees(mol·L⁻¹)⁻¹·cm⁻¹. Because the rotation is only 46.5
degrees (mol·L⁻¹)⁻¹·cm⁻¹, we know that the percentage of the sample of A that is giving rise to the rotation is (46.5 ÷ 48.0) × 100 = 96.9%. But because the impurity is A*, this is not all of the A in the sample.

Consider the case where [A] = [A*], which gives rise to no rotation of light because the degree of rotation of A* will exactly cancel the rotation of A. If we have a mixture of 10% A* and 90% A, then the rotation os 10% of A* will cancel an equal amount of rotation by A. Thus, the observed rotation will be 80% of the value of pure A or 0.80 × 48.0 degrees·(mol·L⁻¹)⁻¹·cm⁻¹ = 38
degrees·(mol·L⁻¹)⁻¹·cm⁻¹. For the specific case in hand, the 3.1% rotation that is lost must be due to a 1:1 mixture of A and A*. So the total amount of A in the

sample will be 96.9% + 1/2(3.1%) = 98.5%.