

Low-leakage WSe₂ FET gate-stack using titanyl phthalocyanine seeding layer for atomic layer deposition of Al₂O₃

Sara Fathipour¹, Jun Hong Park^{2,3}, Andrew Kummel³, and Alan Seabaugh¹

¹Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

²Materials Science & Engineering Program, University of California, San Diego, CA 92093, USA

³Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA

The fabrication of top-gated transition metal dichalcogenide (TMD) field-effect transistors (FETs), requires a uniform and pinhole-free gate dielectric. For realization of TMD tunnel FETs (TFETs) a high-k gate dielectric with subnanometer equivalent oxide thickness (EOT) is required. However, deposition of a thin, uniform high-k dielectric on a TMD surface without functionalization is challenging [1]. This is due to the lack of dangling bonds on the TMD surface. In this report, titanyl (TiO) phthalocyanine (C₃₂H₁₈N₈), TiOPc, is used successfully as a seeding layer on WSe₂ to enable the atomic layer deposition of Al₂O₃. TiOPc is an organic semiconductor with a band gap of approximately 2 eV in air [2]. We demonstrate the first top-gated TMD FET with an EOT as low as 2.2 nm ($\epsilon_{Al_2O_3} = 9$) and a gate leakage current density of 0.2 pA/μm² at 1 V gate bias. The best prior report we have found, by Liu [3] on MoS₂, achieved an EOT of 6.9 nm with a gate leakage current density of 2 pA/μm². As a point of reference the ITRS [4] targets an ultimate EOT for CMOS approaching 0.4 nm with a current density below 0.25 pA/μm². Here, we compare the electrical characteristics of top-gated TiOPc-seeded Al₂O₃ WSe₂ FETs against the characteristics of the same transistor with an ALD Al₂O₃ back gate. We also report the improvements obtained by post-deposition high vacuum annealing.

The process flow consisted of electron-beam (EB) evaporation of Ti/Au (5/100 nm) on the back of a p^+ Si wafer. On the top surface, 27 nm of Al₂O₃ was next deposited by ALD. WSe₂ flakes (2D Semiconductors Co.) were then exfoliated on the 27 nm Al₂O₃ layer. The flakes were patterned for source/drain contacts using EB lithography (EBL) followed by EB deposition of Ti/Pd (0.8 nm/ 90 nm) and lift off. A monolayer of TiOPc was then deposited on the WSe₂ by organic molecular beam epitaxy [5]. Next, the ALD of 5 nm Al₂O₃ was performed at 120 °C. Finally, the top gate contacts were patterned using EBL, followed by EB deposition of Ti/Pd (0.8 nm/ 120 nm) and lift off.

The electrical characteristics of back gated and top gated devices were measured at 300 K in a vacuum probe station at a pressure of 1.9×10^{-6} Torr. The transistors showed a stronger current modulation with the back gate, 1000, compared to the top gate, 100, due to a reduction in contact resistance with the back-gate bias. High vacuum annealing (HVA) was performed on one transistor wafer at 200 °C at a pressure of 1×10^{-10} Torr for 10 minutes. The drain current increased by an order of magnitude in most of the transistors, whereas top and back-gate currents remained the same.

This work was supported by the Center for Low Energy Systems Technology (LEAST), a STARnet Semiconductor Research Corporation program sponsored by MARCO and DARPA.

[1] S. McDonnell et al. *ACS Nano* 7, 10354 (2013). [2] J. E. Norton and J.-L. Brédas, *J. Chem. Phys.*