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Abstract—We demonstrate a novel ferroelectric (FE) 
superlattice based multi-level cell (MLC) memory, which 
outperforms previous multi-state FE memory implemented 
using partial polarization switching, from the standpoint of 
device-to-device variation. We show that the FE superlattice 
consisting of alternate FE and dielectric (DE) thin layers 
provides a scalable approach for MLC implementation 
because: 1) the superlattice constructs controlled layer-by-
layer polarization switching in the constituent FE layers; 2) the 
number of FE layers equals the number of stored bits; and, 
finally, (3) the switching of all the domains in a given coercive 
field (EC) distribution associated with one isolated peak 
suppresses the variation induced by partial polarization 
switching. Based on these, we experimentally demonstrate a 2-
bit/cell FE superlattice memory and simulate a 3-bit/cell 
memory with excellent device-to-device variation.      

I. INTRODUCTION 
Doped HfO2 based FeFET has emerged as one of the 

leading candidates for embedded nonvolatile memory (eNVM) 
due to its excellent CMOS compatibility and scalability. As a 
result, it has been integrated in advanced technology nodes and 
excellent performance has been demonstrated [1]. However, 
several challenges remain for it to become a competitive eNVM 
technology. The first challenge is the limited endurance caused 
by charge injection during the write operation and high write 
voltage to switch the polarization. Several device-level 
solutions have been proposed to overcome both the endurance 
and logic compatible voltage bottlenecks [2].  

A remaining key bottleneck for FeFET is the exacerbation 
of device-to-device variation with scaling of device dimensions 
and eventual collapse of the memory window [3]. It is caused 
by partial polarization switching, where write pulses sample 
different portions of the EC distribution for different devices. 
The reduced number of domains in scaled device, coupled with 
domain inhomogeneity and stochasticity of domain switching, 
make the variation induced by partial polarization switching 
hard to control even for binary memory. The variation only gets 
worse for MLC implemented through partial polarization 
switching, and the programmed states strongly overlap with one 
another and are practically indiscernible (Fig.2(a)).    

Complete polarization switching with a single write pulse, 
where domains in an EC distribution are all switched 
irrespective of their local environment, has been shown to be an 
effective method to suppress variation [3]. Thus, MLC FE 
memory with well-controlled variation can be realized if a 
multi-peak EC distribution can be designed such that each 
distribution associated with an isolated peak represents 
precisely one bit of information and get fully switched during 
the write operation (Fig.2(b)). In this work, we design and 

experimentally demonstrate a novel FE superlattice memory 
(Fig.1), where FE layers are separated by non-FE layers, to 
realize a multi-peak EC distribution. With theoretical modeling, 
we show that this multi-peak EC landscape is achieved through 
controlled layer-by-layer switching of individual FE layers. 
This means that it is theoretically feasible to even realize a N-
bit cell with N layers of FE. To that effect, we demonstrate a 3-
bit/cell superlattice MLC with excellent control of variation 
using a kinetic Monte Carlo (KMC) modeling framework. 

II. DEVICE FABRICATION PROCESS 
The key processing steps to fabricate metal-ferroelectric-

metal (MFM) capacitors are shown in Fig.3(a). In additional to 
the HfO2/ZrO2 superlattice, two control devices, FE Hf0.4Zr0.6O2 
and anti-ferroelectric (AFE) ZrO2 (all 10nm), are also fabricated 
for comparison. All the devices are fabricated on a highly doped 
(1019 cm-3) p-Si substrate with tungsten (W) bottom and top 
electrodes. All samples are annealed at 600 ºC for 
crystallization and stabilization of the FE and AFE phases.  

High resolution cross-section TEM images of the three 
stacks (Fig.3(b-d)) show that the superlattice is poly-crystalline 
but the composition remains intact for all the layers. There is no 
intermixing between the HfO2 and the ZrO2 layers. The QFE-VFE 
hysteresis loops of the superlattice exhibit a two-step switching 
characteristic, different from the stand-alone FE and AFE 
controls. Unlike the Hf0.4Zr0.6O2 FE control, the superlattice 
shows a weaker ferroelectricity. However, it is non-volatile and 
retains its polarization states, which is different from the AFE 
ZrO2 control. The two-step switching corresponds to a double-
peak distribution of EC, as shown in the first-order reversal 
curve (FORC), which measures the Preisach density of 
polarization switching [4]. Two peaks of the same polarity 
appear for the same program voltage polarity, in sharp contrast 
to that in AFE, where two peaks are of opposite polarities for 
the same voltage polarity due to polarization relaxation.  

III. RESULTS AND DISCUSSION 
A. Ferroelectric Superlattice Working Principle 

To understand the origin of multi-peak distribution of EC in 
FE superlattice, we model the superlattice stack based on the 
Landau-Khalatnikov theory of FE (Fig.4) [5]. We combine the 
volume Gibbs free energy of the individual FE and DE layers 
and weight with their respective thicknesses to obtain the total 
surface Gibbs free energy. After considering the electrical 
boundary conditions, the surface Gibbs free energy is a function 
of the polarization in each FE layer (3 layers in our study). 
Therefore, for every bias point, the polarization states can be 
determined by minimizing the surface Gibbs free energy.  

The simulated PFE-VFE hysteresis loop of the superlattice 
with three FE layers and two DE layers in between exhibits a 
three-step switching characteristic (Fig.5(a)), indicating a 



triple-peak EC distribution. The polarization configuration in 
each layer is shown at several critical points on the loop. The 
intermediate states (point B, C and E, F) correspond to a single 
layer switching. When the voltage is swept from negative to 
positive, a controlled layer-by-layer switching is observed. This 
results from the electrostatic interaction between the 
polarizations in different layers. Switching in one layer 
modifies the electric field in the others, which in turn changes 
their switching characteristics. For a 3-bit MLC cell, only 6 
states are shown in Fig.5(a), while the other 2 states are hidden. 
This is because those hidden states (states G and H, shown in 
Fig.5(b)) need a specific combination of pulses to access. For 
example, the state G can be accessed by reaching state C first, 
and then switch the first layer back again. In this way, we can 
see that FE superlattice provides an effective approach to 
realize MLC memory. The surface Gibbs free energy contour 
(Fig.5(c-j)) is projected onto the PFE1-PFE2 plane (PFE3 value is 
fixed). With the change in electrical bias, the progressive 
switching of an individual FE layer is clearly shown.  
B. Experimental Device Characteristics 

We measured the MLC characteristics on two superlattice 
samples with 5 layers. In one case, the ZrO2 layers are separated 
by 1nm thick HfO2 spacer layer, while, in the other case, the 
HfO2 spacer layer thickness is increased to 5nm (Fig.6(a-f)). A 
double-peak distribution is readily observed in both samples, 
suggesting that the ultra-thin ZrO2 layer is ferroelectric [6]. The 
separation of the two peaks increases with the spacer layer HfO2 

thickness, which provides an insightful guideline towards the 
optimization of the EC distributions for MLC operation, as it is 
critical to reduce the overlap between the peaks so that 
switching of each peak is independent of each other. 

A modified positive-up-negative-down (PUND) pulse 
sequence is applied to verify memory write and read operations 
(Fig.7(a)). The device is initialized by the first two pulses and 
the last two pulses read out the residual polarization that left 
unswitched by the write pulse. In this double-peak distribution 
device, 2 bit/cell, corresponding to four write pulses are 
demonstrated (Fig.7(b-f)). The transient current waveform 
induced by the read pulses (Fig.7(b)) and IFE-VFE characteristics 
during the write pulses (Fig.7(c) and (e)) show that ±1V write 
pulses only switch the distribution associated with the first 
peak, while ±2V write pulses switch both the peaks. Therefore, 
through pulse engineering, we can individually switch all the 
domains in one distribution associated with an isolated peak. 
These results indicate that we can utilize the multi-peak EC 
distribution to realize a MLC memory device. We also studied 
the endurance and retention of the superlattice, which shows 
more than 106 cycles and no polarization loss at 85°C for 1hr.  
C. Advantages of Superlattice in Variation Control 

Multi-state operation of FE memory can also be realized 
through partial polarization switching (Fig.2(a)), as shown 
before in ferroelectric synaptic weight cell [7]. To illustrate the 
advantages of full polarization switching in multi-peak 
superlattice over the partial polarization switching in FE in 
implementing MLC, we adopt the KMC framework to evaluate 
the device-to-device variation [3]. Figs.8 (a-c) and (f-h) show 
the calibration of the KMC model to the measured QFE-VFE, IFE-
VFE characteristics and the extracted EC distribution for both the 

superlattice (Fig.6(d)) and stand-alone FE (Fig.3(b)), 
respectively. The fitted parameters are then used to simulate the 
device-to-device variation in 2-bit/cell MLC memory.  

The devices are first initialized and write pulses similar to 
Fig.7(a) are applied to access all the four levels. The variation 
of the PFE during the write operation are shown in Figs.8(d) and 
(i) for both the superlattice and the FE. Clearly, with 100 
domains, the superlattice exhibits a much better controlled 
variation compared with FE. This is because each peak in the 
double-peak distribution corresponds to one level and gets fully 
switched by the write pulses. Therefore, the variation is tight 
irrespective of the distribution. However, for the partial 
polarization switching in FE, the distribution makes a huge 
impact on the variation. Fig.8(e), (j) show the PFE distribution 
after write pulses. States overlap in the FE case, whereas they 
are well separated in the superlattice.  

The effect of scaling (here the domain number is reduced to 
20) on the variation is shown in Figs.9(a) and (b) for the 
superlattice and FE, respectively. The reduced domain number 
greatly increases the variation, which remains a big challenge 
for the FE memory [3]. However, because of the full 
polarization switching in the superlattice, the variation is still 
tight even with limited number of domains. Therefore, the 
superlattice can potentially provide a scaling path for FE MLC 
memory. We further studied the possibility of implementing a 
3bit/cell MLC using the superlattice. We add one more peak to 
the double-peak EC distribution in Fig.8(c) to form a triple-peak 
distribution and simulate the variation of the 8 levels 
(Fig.10(a)). The states strongly overlap in FE; while they 
remain separated in the superlattice. From these comparisons 
between the superlattice and FE, and also considering the 
current power-hungry, high-latency, and limited endurance 
embedded flash memory (Fig.11), superlattice based 
ferroelectric memory emerges as a promising candidate for 
future eNVM with MLC capability. 

IV. CONCLUSIONS 
In summary, we demonstrate a novel ferroelectric 

superlattice based MLC non-volatile memory with excellent 
variation. It relies on the full switching of individual peaks in 
the multi-peak EC distribution created by the superlattice. We 
experimentally demonstrate a 2bit/cell MLC and simulated a 
3bit/cell MLC with well-controlled distribution. Considering its 
excellent performance (write power, latency, endurance, 
retention etc.), the FE superlattice provides a scalable approach 
for MLC non-volatile memory implementation.   
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Motivation: Ferroelectric Superlattice for Multi-Level Cell (MLC)

Ferroelectric Superlattice Fabrication Process

Fig.1. Ferroelectric (FE) superlattice provides an effective scalable approach to
create a multi-peak EC distribution, which could be harnessed to demonstrate
non-volatile MLC memory device (N ferroelectric layers can store N bits).
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application.

Fig.6. Superlattice stacks (a) and (d) to achieve multi-level cell
(MLC) and their corresponding QFE-VFE ((b) and (e)) and IFE-
VFE ((c) and (f)) characteristics. The increase of middle HfO2
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peaks in the double-peak distribution. Selective switching of a
distribution peak, while not disturbing domains in other peaks
can achieve MLC with full polarization switching.
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Fig.9. Device scaling (20 domains) causes significant
states overlap for partial polarization switching (b)
compared with full polarization switching (a).
Superlattice provides an effective pathway for scaling.
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