Full length article

Al₂O₃/Si₀.₇Ge₀.₃(001) & HfO₂/Si₀.₇Ge₀.₃(001) interface trap state reduction via in-situ N₂/H₂ RF downstream plasma passivation

Michael Breedena, Steven Wolfb, Scott Uedaa, Ziwei Fangc, Chih-Yu Changc, Kechao Tangd, Paul McIntyre, Andrew C. Kummela,b,*

a Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, United States
b Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
c Taiwan Semiconductor Manufacturing Company, Ltd., Hsinchu City, Taiwan, Republic of China
d Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States

A R T I C L E I N F O

Abstract

A novel method for passivating the interface between Si₀.₇Ge₀.₃ using an in-situ downstream RF plasma consisting of a nitrogen-rich mixture of H₂ and N₂ gases at 250 °C prior to atomic layer deposition (ALD) of Al₂O₃ and HfO₂ was demonstrated. XPS spectra of the interface with Al₂O₃ indicated the presence of a nitride layer enriched in SiON₄ and depleted in Ge relative to the substrate. The electrical properties of this interface were characterized using I-V and variable frequency C-V measurements of MOS capacitors. The N₂/H₂ plasma passivation process produced a reduced density of interface trap states (Dit) and lower gate leakage compared with ex-situ HF clean and sulfur passivation for Al₂O₃ gate oxides. The lowered leakage current and Dit observed compared with HF(aq) or sulfur-passivated surfaces were consistent with enhanced oxide nucleation due to N₂/H₂ plasma passivation lowering carbon surface contamination and dangling bonds. TEM/EELS analysis of the interface was consistent with the presence of a thin interfacial nitride layer suppressing the formation of Ge–O bonds at the interface to form an SiOₓ-rich interlayer (IL).

1. Introduction

To meet the demands of higher-performance, lower-power computing devices, the continued scaling of complementary metal-oxide-semiconductor (CMOS) devices requires the use of high-dielectric constant insulators (high-k dielectrics) and new channel materials. One promising class of channel materials are silicon-germanium (SiGe) alloys. The enhancement of hole mobility compared with Si due to splitting of the valence band heavy and light-hole band degeneracies makes tunable-Ge content SiGe channels desirable for use in p-type MOSFETs [1–3]. In comparison with other channel materials such as III–V compounds, SiGe alloys can be introduced into existing CMOS process flows, and growth of epitaxial SiGe layers by low-pressure chemical vapor deposition (LPCVD) or molecular beam epitaxy (MBE) has been well-studied and is in commercial use for heterojunction bipolar transistors, [4,5] as well as for stressor materials in strained-Si channel MOSFETs [6].

High-k dielectrics containing Al and/or Hf have been integrated successfully with commercial Si-channel CMOS processes since the 45 nm node [23,24]. On Si, the density of interfacial defects is low, and attempts at improving the quality of the gate oxide have focused on the suppression of SiO₂ formation at the interface using a Ti- or La-doped HfO₂ dielectric to ensure an amorphous microstructure and formation of Hf-silicate at the interface to improve capacitance [25,26]. Conversely, formation of low defect interfaces between high-k oxides and higher-mobility channel materials such as GaAs or InGaAs has been challenged by high densities of defects with HfO₂, Al₂O₃, and TiO₂ gate oxides, or mixed metal oxides and silicates [27]. Chemical passivation of these surface defects prior to high-k deposition by ALD has been achieved on III-V substrates by employing thin Al₂O₃ layers to suppress As-O and Ga-O formation [28], as well as the use of dimethylaluminum hydride and O₂ in an MOCVD process to remove native oxides on InGaAs prior to deposition of HfTiO dielectric [29]. Suppression of an interfacial layer on the high-k/GaAs system has been achieved through nitrogen reactive sputtering of HfTi to form HfTiO [30]. In-situ plasma nitridation has also been reported on InGaAs using alternating pulses of N₂ plasma and trimethylaluminum prior to HfO₂ deposition [31]. Two-dimensional materials such as graphene offer the potential for zero interfacial layer thickness, but the chemically-inert surface of graphene has limited nucleation density of oxide layers. Nucleation of
Al₂O₃ on graphene has been achieved by pre-pulsing H₂O prior to ALD, with physisorbed H₂O acting as a seed for subsequent reaction with trimethylaluminum (TMA) [35,36].

Passivation of interfacial defects on SiGe-channel CMOS devices requires a different approach than on III-V semiconductor channel devices. In-situ nitridation has been extensively studied on Ge MOS devices in suppressing the formation of thermally-unstable GeO₂ and diffusion of Ge into the high-k dielectric by terminating the surface with Ge nitrides and oxynitrides, resulting in high thermal stability and low interface state densities (Dₜᵥ) [7–9]. However, the relative stability of Si–N bonds compared with Ge–N bonds has resulted in higher interface state defect densities for SiGe alloys. Low Dₜᵥ values for SiGe have been reported by using post-deposition plasma nitridation by N₂ [10], passivation of SiGe by aqueous sulfur treatment [11], and NH₃ plasma nitridation [12]. However, post-deposition nitridation limits equivalent oxide thickness scaling and control over initial nucleation and growth, while aqueous sulfur passivation presents reliability concerns while requiring ex-situ treatment. NH₃ plasma nitridation, while successfully employed for plasma-enhanced ALD processes of metal nitrides, results in a fixed ratio of N and H species in plasma, which may result in suboptimal nitridation conditions for surface passivation [37].

This work demonstrates the use of a tunable mixture of H₂ and N₂ species in an RF downstream plasma to passivate the surface of SiGe prior to deposition of gate oxide. Capacitance-voltage and current-voltage measurements were used to determine the effectiveness of the N₂/H₂ RF plasma process on the interface state density and leakage current, while X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and electron energy-loss spectroscopy (EELS) were employed to investigate the chemical environment of the SiGe/high-k interface, as well as the interfacial layer thickness and composition using Al₂O₃ and HfO₂ as gate dielectrics.

2. Experimental

In this study, to demonstrate the effectiveness of the N₂/H₂ downstream plasma passivation method, metal-oxide-semiconductor capacitors (MOSCAPs) were fabricated with Al₂O₃ and HfO₂ dielectrics on a Siₓ₋₀.₇Ge₀.₃ channel with (001) orientation. The SiGe channel layer consisted of a 9-nm-thick p-type Siₓ₋₀.₇Ge₀.₃(001) layer with 1 × 10¹⁸ cm⁻³ dopant density epitaxially grown on p-type Si(001) by molecular beam epitaxy (Applied Materials, Inc.). Prior to dielectric deposition, each sample underwent an organic clean via a rinse of acetone, methanol, and DI H₂O, followed by native oxide removal via 2.5 cycles of 1 minute immersion in 2% HF(aq) and 1 minute immersion in DI H₂O, following the method of Oshima et al., on high-Ge content substrates [7]. To benchmark N₂/H₂ plasma passivation in comparison with other methods, three methods were compared – HF(aq) only clean in which no further preparation prior to dielectric deposition was performed, ex-situ sulfur passivation in which the sample was immersed in a 25% solution of (NH₄)₂S for 15 min, and in-situ N₂/H₂ plasma pre-deposition. After ex-situ sample preparation, samples were transferred to the ALD chamber within 2 min to minimize air exposure. Fig. 1 depicts the chamber used to perform dielectric deposition and in-situ plasma passivation. The main deposition chamber is pumped to a base pressure of 2 × 10⁻¹⁰ Torr via rotary vane mechanical pump and is connected to a load lock for sample transfer. Above the chamber, an RF downstream plasma source (PIE Scientific, Inc.) was mounted to generate the N₂/H₂ plasma mixture. A sapphire plasma tube was employed to resist attack from atomic H generated in the plasma [13]. An ultra-high purity mixture of N₂ and 5% H₂ in Ar (Praxair) at 1 Torr pressure was employed for the plasma source with an N-to-H ratio of 20:1, which was maintained at an RF power of 20 W. Plasma processing was performed after the sample was pre-heated for 5 min at 250 °C.

For ALD of the dielectric layer, trimethylaluminum (TMA, Strem Chemicals, Inc.), tetrakis(dimethylamino) hafnium (TDMAH, Strem Chemicals, Inc.), and 18 MΩ·cm DI H₂O were mounted to the chamber for Al₂O₃ and HfO₂ deposition. TMA and H₂O sources were kept at 25 °C, while the TDMAH source was heated to 70 °C. All chamber walls, precursor dosing lines, and pump lines were held at a temperature of 130 °C to ensure precursors would not condense on the wall prior to reaching the sample and to minimize powder formation. To maintain the deposition temperature at 250 °C, a UVH pedestal heater (Heatwave Labs, Inc.) was utilized, and samples were pre-heated for 5 min prior to in-situ processing. Pneumatic valves controlled via custom LabVIEW program were employed to control dosing times of precursors. Expansion volume dosing was used for TMA and H₂O dosing due to their high vapor pressures. During Al₂O₃ cycles, TMA was dosed into the expansion volume for 600 ms, followed by a 5 s dose to the chamber and 1 s inert purge. Subsequently, water was dosed into the expansion volume for 700 ms, followed by a 5 s dose and 1 s inert purge. For HfO₂ cycles, TDMAH was dosed directly to the chamber for 250 ms, followed by a 25 s inert purge, and the water half-cycle was dosed to the expansion volume for 600 ms, dosed to the chamber for 5 s and inert purge for 10 s. The TDMAH and H₂O purge times were increased to avoid the possibility of gas-phase reactions inducing CVD, as the lower vapor pressure of the TDMAH precursor resulted in incomplete gas evacuation before the next half-cycle without extension. A constant 100 mTorr UHP N₂ (Praxair) purge was run during deposition to prevent mixing of precursors in the reaction chamber.

To complete the MOSCAP structure, 30 nm of Ni was thermally evaporated to form 150 μm diameter circular gates, and a backside 100 nm Al contact was deposited via DC sputtering. After fabrication, MOSCAPs were annealed in forming gas (5% H₂, 95% N₂) at 300 °C for 15 min, 330 °C for 10 min, and 350 °C for 5 min, following the method described by Kavrik et al. [32]. Capacitance-, conductance-, and current-voltage (C-V/G-V/I-V) characteristics of the MOSCAPs were performed using an Agilent B1500 semiconductor analyzer with an AC modulation amplitude of 30 mV between a gate bias of −2 and +2 V at frequencies from 2 kHz to 1 MHz. Using the C-V and G-V relationships measured, interface state densities (Dₜᵥ) were measured using both the conductance method [14] and the full interface state distribution and density of bulk-oxide trap states was calculated using the method of Chen and Yuan [15,16]. The gate leakage current was measured between −2 and +2 V bias.

To investigate the chemical environment at the high-k/SiGe interface, 5 cycles of Al₂O₃ were deposited on SiGe samples after organic and HF preclean, and with or without N₂/H₂ plasma passivation. These samples were removed and rapidly transferred (with a maximum of 2 min of air exposure) to a surface analysis tool consisting of load lock and UHV chamber at a base pressure of 1 × 10⁻¹⁰ Torr with a monochromatic XMM1000 MkII/SPIHERA XPS system (Omicron Nanotechnology GmbH) for collection of XPS spectra. The source used was a monochromatic Al kα source at 1486.7 eV with an analyzer pass energy of 50 eV and linewidth of 0.1 eV, and XPS spectra were collected at 30° with respect to parallel to the sample. XPS analysis was performed using CASA XPS 2.3 software, with raw peak areas corrected via Schofield photoionization cross-sectional relative sensitivity factors. Elemental analysis of the high-k/SiGe interface was performed using TEM/EELS at electron acceleration of 80 keV to minimize beam damage to the Al₂O₃ layer. Principal component analysis was used to de-noise EELS spectra [17].

3. Results & discussion

3.1. Al₂O₃/SiGe

To compare the effects of N₂/H₂ plasma passivation with HF(aq) only clean and sulfur passivation, 40 ALD cycles of Al₂O₃ were deposited at 250 °C and MOSCAPs were fabricated. Fig. 2 displays the C-V characteristics of three of the devices, with the HF(aq) only cleaned sample exhibiting a larger low-frequency “bump” between 0 and 0.5 V gate bias than either the N₂/H₂ plasma passivated surface or the sulfur-
passivated surface. By the conductance model [14], interface state densities were found to be 3.6×10^{12}, 8.9×10^{11}, and $7.2 \times 10^{11} \text{cm}^{-2} \text{eV}^{-1}$ at midgap for HF only, HF + ex-situ sulfur, and HF + in-situ N$_2$/H$_2$ plasma passivation, respectively. The in-situ N$_2$/H$_2$ plasma passivation Dit is comparable to the peak value obtained by post-deposition plasma nitridation and demonstrates a factor of 3 improvement in interface state density over in-situ ammonia plasma nitridation [10,12]. Oxide capacitances derived from the full interface state model were 1.02, 1.13, and 1.10 μF·cm$^{-2}$, respectively [15]. Equivalent oxide thickness (EOT) for the three Al$_2$O$_3$ devices was 3.4, 3.1, and 3.1 nm. The sulfur-cleaned and N$_2$/H$_2$ plasma-cleaned samples exhibited similar oxide capacitances, illustrating that the N$_2$/H$_2$ plasma passivation technique is effective in preventing unwanted interfacial oxide growth during Al$_2$O$_3$ ALD.

![Fig. 1. Chamber schematic showing the load-locked deposition chamber with attached RF downstream plasma source, heated sample stage, and precursor dosing lines.](image)

By comparison, interface states at the Ge/GeO$_2$ interface have been found to act as acceptors, and observed interface state densities are consistent with GeO$_x$-induced defects in the oxide interfacial layer [19–21]. This result is consistent with the formation of Si-O-Al bonds at the interface which are effectively passivated by hydrogen after forming gas anneal. Border trap densities (N_{bt}) were calculated with the model of Yuan, with N_{bt} values for HF only, HF + sulfur, and HF + plasma passivated devices being $3.9 \times 10^{19} \text{cm}^{-3} \text{eV}^{-1}$, $1.8 \times 10^{19} \text{cm}^{-3} \text{eV}^{-1}$, and $1.8 \times 10^{19} \text{cm}^{-3} \text{eV}^{-1}$, respectively [16]. Care in interpreting these values should be taken, as the model does not consider substrate series-resistance or correct for the effect of gate leakage current density [16].

The effect of the forming gas anneal on the plasma-cleaned devices is illustrated in Fig. 4. The temperatures and times used for the forming gas anneal were chosen after an optimization of anneal conditions, from which it was found that a ramped temperature anneal from 300 °C to 350 °C for 30 min improved the interface quality over a constant temperature anneal, following the method of Kavrik et al. [34]. This is reflected in the reduction in Dit from $3.6 \times 10^{12} \text{cm}^{-2} \text{eV}^{-1}$ for the HF(aq)-only sample before anneal, to $1.1 \times 10^{12} \text{cm}^{-2} \text{eV}^{-1}$ for the 15 min 300 °C annealed sample and $7.2 \times 10^{12} \text{cm}^{-2} \text{eV}^{-1}$ for the 30 min ramped forming gas anneal. It is hypothesized that the interfacial defects as reflected in the conductance-voltage characteristics have a distribution of activation energies and preexponential factors; ramping the temperature of anneal over time, these defects can be more effectively passivated while minimizing the total thermal budget.

![Fig. 2. 2 kHz–1 MHz C-V characteristics of 40 cycle Ni/Al$_2$O$_3$/Si$_{0.7}$Ge$_{0.3}$ MOSCAPs after forming gas anneal. (a) HF(aq) pre-clean only – 5.9 nm oxide + interlayer thickness (b) HF(aq) clean + ex-situ (NH$_4$)$_2$S treatment – 6.1 nm oxide + interlayer thickness (c) HF(aq) clean + N$_2$/H$_2$ plasma treatment – 6.0 nm oxide + interlayer thickness. Cox values were estimated using quasi-static C-V simulations.](image)
extended, limiting Ge diffusion through the interface during anneal.

To evaluate the chemical structure of the interface between Al₂O₃ and SiGe, 5 cycles of Al₂O₃ were deposited on SiGe at 250°C. Prior to deposition, samples were cleaned with HF(aq) only or with HF (aq) + in-situ N₂/H₂ RF plasma passivation to compare the effectiveness of the passivation techniques. XPS spectra for a) Si 2p, b) Ge 3d, c) N 1s, and d) O 1s are shown in Fig. 5, and the integrated XPS spectrum area of each peak and the SiONₓ and GeONₓ peaks are shown in Fig. 5(e). The composition of the nitride peaks corresponding to SiNₓ and GeNₓ components are observed at 102.1 eV and 31.8 eV, respectively, for the N₂/H₂ plasma-passivated surface. The N 1s peak is absent from the HF only cleaned sample, reflecting the lack of nitrogen treatment, while on the N₂/H₂ plasma cleaned sample, the peak is centered at 398.0 eV, consistent with values reported previously for SiONₓ [32,33].

The ratio of the nitride signal to the elemental XPS peak is approximately 39% for the Si peak and 17% for the Ge peak on the plasma-passivated surface, suggesting preferential formation of Si–N bonds over Ge–N bonds. This is consistent with previous XPS studies of preferential formation of Si₃N₄ compared with GeNₓ and is consistent with the higher heat of formation of Si₃N₄ at ~744 kJ/mol compared with ~63 kJ/mol for GeNₓ. Due to the lower GeNₓ heat of formation, only a small component of stoichiometric Ge oxynitride within the SiONₓ layer is observed [22]. The resulting SiONₓ-rich layer is more thermally stable and more likely to inhibit H₂O and Ge diffusion through the interface during ALD oxide growth, improving interface quality compared with HF(aq) only cleaned interfaces [33]. Furthermore, a small GeOₓ shoulder on the Ge peak located at 30.5 eV is observed on the HF(aq) only cleaned sample, while the N₂/H₂ plasma passivated sample lacks this feature. This is also consistent with the suppression of Ge–O bonding in the nitrided sample. The intensity of the Si and Ge peaks is suppressed for the N₂/H₂ plasma-passivated surface compared with the surface cleaned only by HF(aq) prior to deposition, suggesting a thicker layer of Al₂O₃. This is consistent with the N₂/H₂ plasma passivation enhancing initial nucleation of the gate dielectric, which is reflected in the plasma-passivated devices exhibiting lower leakage currents.

The formation of the nitride interfacial layer is hypothesized to be due to the reaction of NHₓ− radicals at the surface of the SiGe channel. A plasma power of 20 W is sufficient to ionize N₂ and H₂, but since the pressure in the chamber exceeds 1 mTorr, ion recombination of these species occurs before the plasma gases can reach the surface of the sample. Instead, it is expected that atomic N formed in the plasma reacts with Si and Ge to form SiNₓ and GeNₓ, while the NHₓ− radicals react with surface defect sites and C contamination on the surface. Previous studies of plasma nitridation on SiGe with ammonia have hypothesized the nitridation species to be atomic N, while residual carbon defects on the surface are cleaned up through reaction with NHₓ radicals [10,12]. A higher N-to-H ratio is then expected to promote atomic N in the plasma gases, enhancing surface nitridation.

To investigate the thickness of the interfacial layer and the chemical structure of the interface in a full MOSCAP device after forming gas anneal, high-resolution transmission electron microscopy (HRTEM) was used to image a cross section of the interface. Additionally, electron

![Fig. 3. (a) Full interface state model [15] and (b) I-V characteristics of 40 cycle Ni/Al₂O₃/Si₀.₇Ge₀.₃ MOSCAPs after forming gas anneal.](image)

![Fig. 4. Conductance-voltage characteristics of Ni/Al₂O₃/Si₀.₇Ge₀.₃ MOSCAPs with 40 cycles of Al₂O₃ ALD after N₂/H₂ plasma passivation (a) before ramped forming gas anneal, (b) after 15 min 300 °C forming gas anneal, and (c) after 30 min ramped forming gas anneal from 300 to 330 to 350 °C.](image)
energy-loss spectroscopy (EELS) was employed to capture the chemical structure of the interface on the HF(aq) only, sulfur-passivated, and N2/H2 plasma passivated devices. Fig. 6 shows HRTEM and EELS spectra across the gate stack on the HF(aq) only, sulfur-passivated, and N2/H2 passivated devices. From inspection of the HRTEM and EELS data, the interfacial layer thickness of the plasma-cleaned device was 1.5 nm, compared with 1.3 nm for the sulfur cleaned device and 1.6 nm for the HF(aq) only cleaned device. However, the nonuniformity of the interfacial thickness suggests no correlation of interfacial thickness with improved interfacial quality. Fig. 5f contains the EELS data for the sample passivated by N2/H2 plasma, which illustrates a nitride layer 1.5 nm thick at the interface. At the center of the N peak, the ratio of Ge relative to Si is 0.14, which is consistent with an interlayer mostly consisting of SiONx with low Ge content relative to the HF(aq) only cleaned surface. This suggests that the nitride formed during plasma-passivation is effective in suppressing the formation of Ge–O bonds by preventing the diffusion of Ge through to the gate oxide during growth.

3.2. HfO2/SiGe

To determine if the N2/H2 plasma passivation is effective in passivating the interface between SiGe and a higher-dielectric constant insulator, MOSCAPs with 40 and 50 ALD cycles of HfO2 were fabricated. Fig. 7 illustrates the C-V characteristics of five of these devices, with the HF(aq) only clean exhibiting a larger low-frequency “bump” between 0 and 0.5 V gate bias than the N2/H2 plasma passivated surface. Unlike the Al2O3 MOSCAPs, sulfur passivation of the HfO2 MOSCAPs was unsuccessful in yielding devices with lower leakage and defect densities than the HF(aq) only device, and 40 cycle MOSCAPs prepared by HF(aq) only clean had a leakage current density too large to accurately extract the interface state density profile from the measured C-V data. Furthermore, while interface state analysis was performed for the 40 cycle sulfur-passivated device, the high leakage current density may call into question the validity of the extracted profile. It is noted that the poor performance of the sulfur passivated HfO2 MOSCAPs may be deposition system and precursor specific. By the conductance model, interface state densities for the 40 cycle HfO2 devices were found to be 6.1×10^{12}, 4.9×10^{12}, and 3.8×10^{12} cm$^{-2}$ eV$^{-1}$ at midgap for the HF(aq) only, HF(aq) + ex-situ sulfur, and HF(aq) + in-situ N2/H2 plasma passivation, respectively. For the 50 cycle devices, the HF(aq) only cleaned device had a Dit of 4.8×10^{12} cm$^{-2}$ eV$^{-1}$, while the HF(aq) + N2/H2 plasma-passivated device had a Dit of 2.9×10^{12} cm$^{-2}$ eV$^{-1}$. Oxide capacitances derived from the full interface state model were 1.90, 1.85, and 2.48 μFcm$^{-2}$.
for the 40 cycle devices, and 1.95 and 2.14 μF·cm⁻² for the 50 cycle devices, respectively, demonstrating that an improvement in the interface state density through the N₂/H₂ plasma passivation technique can also be extended to higher dielectric constant materials than Al₂O₃, yielding a lower equivalent oxide thickness.

Fig. 8 details the interface state density across the bandgap and leakage current characteristics for 40 and 50 cycle HfO₂ MOSCAPs. Comparing the leakage current at −2 V bias for 40 cycle HfO₂ MOSCAPs, a 10,000× reduction in leakage is observed for the N₂/H₂ plasma passivated device after forming gas anneal, compared with the HF(aq) only cleaned device. This is indicative of a significant improvement in oxide nucleation and growth on the nitrided interfacial layer. The full interface state model developed by Chen et al. was applied to HfO₂ MOSCAPs with lower leakage to characterize the integrated interface state density across the bandgap [15]. The 50 cycle HF(aq) only sample had an integrated interface state density of 1.6 × 10¹² cm⁻², while the 50 cycle N₂/H₂ plasma-passivated device had an integrated interface state density of 1.2 × 10¹² cm⁻², and the 40 cycle N₂/H₂ plasma-passivated sample 1.1 × 10¹² cm⁻². Integrated interface state density is significantly higher than that of Al₂O₃ MOSCAPs, which is consistent with poor diffusion barrier properties of deposited HfO₂ compared with Al₂O₃. It is hypothesized that the higher integrated Dₖ for the 40 cycle vs 50 cycle ALD processes are consistent with HfO₂ being a poorer diffusion barrier for the ex-situ transfer for metal gate deposition than Al₂O₃. Finally, border-trap densities (Nₜ) were calculated for the non-leaky devices, as the 40 cycle HF only and 50 cycle HF + sulfur passivated devices were too leaky for a meaningful model fit. The 50 cycle HF only device had an Nₜ of 3.3 × 10¹⁹ cm⁻³ eV⁻¹, while the 40 cycle HF + sulfur passivated device had an Nₜ of 6.0 × 10¹⁹ cm⁻³ eV⁻¹. Conversely, the 40 and 50 cycle HF + plasma-passivated devices had Nₜ values of 1.3 × 10¹⁹ cm⁻³ eV⁻¹ and 1.1 × 10¹⁹ cm⁻³ eV⁻¹. Under the border trap model developed by Yuan et al., a single border trap state is assumed and series resistance is neglected, yet these results are still consistent with effective oxide nucleation at the plasma-passivated interface decreasing tunneling into oxide trap states close to the interface [16].

TEM and EELS were used to characterize the thickness and chemical composition of the interfacial layer for the HfO₂ MOSCAPs. Fig. 9 shows the HRTEM images and EELS data for the HF(aq) only, sulfur, and N₂/H₂ plasma passivated devices. The interfacial layer thickness of the plasma-cleaned device was 1.3 nm compared with 1.2 nm for the sulfur cleaned device, and 1.4 nm for the HF(aq) only device. Similar to the Al₂O₃ MOSCAPs, the ratio of Ge to Si in the interface is observed to
decrease relative to the SiGe layer for the N₂/H₂ plasma passivated devices compared with the HF(aq) only devices, with the ratio of Ge to Si at the middle of the interfacial layer being 0.16 for the plasma-passivated device compared with 0.35 for the HF(aq) only device and 0.26 for the sulfur-passivated device. Additionally, the Ge content falls off 0.4 nm than the Si content in the HF(aq) only device, suggesting that the HF(aq) treated surface causes the interlayer on HfO₂ to be a poorer diffusion barrier for Ge compared with plasma and sulfur passivation. The maximum of the N peak observed in Fig. 9f corresponds to a region with lower Ge content relative to Si and significant oxygen, consistent with an interlayer consisting of mostly SiOₓNy.

4. Conclusion

An in-situ, tunable mixture of N and H in an RF downstream plasma has been demonstrated to effectively passivate the surface of SiGe prior to deposition of high-k gate dielectrics Al₂O₃ and HfO₂. As opposed to ex-situ aqueous sulfur-containing treatment or post-deposition plasma nitridation, the pre-deposition in-situ nitridation by N₂/H₂-containing plasma reduces interfacial trap state density by 80% compared with HF (aq) only treatment, and by 20% compared with aqueous sulfur passivation. Investigation of the interfacial composition carried out by XPS illustrates that the formation of an SiOₓNy interfacial layer both

<table>
<thead>
<tr>
<th>HF(aq) Only</th>
<th>HF(aq) + (NH₄)₂S</th>
<th>HF(aq) + N₂/H₂ Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7. 2 kHz–1 MHz C-V characteristics of 40 and 50 cycle Ni/HfO₂/Si₀.₇Ge₀.₃ MOSCAPs after forming gas anneal. (a) HF(aq) pre-clean only, 50 cycles ALD (b) HF (aq) clean + N₂/H₂ plasma treatment, 50 cycles ALD (c) HF(aq) pre-clean only, 40 cycles ALD (d) HF(aq) clean + ex-situ (NH₄)₂S treatment, 40 cycles ALD (e) HF (aq) + N₂/H₂ plasma treatment, 40 cycles ALD. Cox values were estimated using quasi-static C-V simulations.

Fig. 8. (a) Full interface state model [15] and (b) I-V characteristics of 40 and 50 cycle Ni/HfO₂/Si₀.₇Ge₀.₃ MOSCAPs after forming gas anneal.
decreases D_n and lowers leakage currents, which is consistent with an enhancement in gate oxide nucleation. TEM/EELS analysis illustrates that this interfacial nitride layer is effective in suppressing the presence of Ge–O bonds in the interface.

Acknowledgements

This work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant ECCS-1542148). Wafers were supplied by Applied Materials, Inc. This work was partially supported by gifts from Applied Materials, Inc. and Taiwan Semiconductor Manufacturing Company, Ltd.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apsusc.2019.01.216.

References

[33] M. Edmonds, et al., Low-temperature thermal ALD of a SiN4 interfacial diffusion barrier and interface passivation layer on Si1–xGex(001) and Si1–xGex(110), J. Chem. Phys. 146 (2017) 052820.

