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Ag2ZnSnSe4 (AZTSe) is a relatively new n-type photovoltaic (PV) absorber material which has recently
demonstrated a conversion efficiency of ~5% in a Schottky device architecture. To date, little is known
about how the influence of composition on AZTSe material properties and the resulting PV performance.
In this study, the Ag/Sn ratio is shown to be critical in the controlling grain growth, non-radiative
recombination, and the bulk defect structure of the absorber. Insufficient Ag (relative to Zn and Sn)
results in small grains, low photoluminescence intensities, and band gap narrowing, possibly due to an
increase in the bulk defect density. Additionally, etching the AZTSe films in KCN prior to junction for-
mation is found to be important for achieving reproducible efficiencies. Surface analysis using Auger
Nanoprobe Microscopy analysis reveals that a KCN etch can selectively remove potentially harmful Ag-
rich secondary phases, therefore improving the MoO3/AZTSe junction quality. Moreover, grain bound-
aries in AZTSe are found to be enriched in Sn and O following KCN; the role this oxide plays in surface
passivation and junction formation has yet to be determined.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

For over a decade, Cu2ZnSn(S,Se)4 (CZTSSe) thin-film photo-
voltaic absorbers have been studied as earth-abundant alternatives
to more conventional materials such as Cu(In,Ga)Se2 (CIGS) and
CdTe [1e4]. However, the performance of CZTSSe-based devices
lags behind CIGS due to its limited open-circuit voltage (Voc) [5e8].
Materials analysis (neutron diffraction, Raman spectroscopy, pho-
toluminescence measurements, scanning tunneling microscopy,
etc.) has revealed that the CZTSSe bulk contains a large density
(>1020 cm�3) of Cu-Zn antisite pairs, resulting in almost complete
disorder on the Cu-Zn atomic plane in the material [9e18]. Efforts
have been made to eliminate these bulk defects but these have
been met with limited success.

It is believed that the Cu-Zn disorder stems in part from a
similarity in covalent radius between Cuþ1 and Zn2þ cations as well
as the fact that they differ in valence by only one charge, leading to
).
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a low formation enthalpy for defects due to the small strain
resulting from Cuþ1/Zn2þ exchange [19e21]. Therefore, one
promising approach for overcoming the limitations with CZTSSe
based photovoltaics is to transition to a material which has a larger
barrier to I-II site exchange. Recent studies point to Ag2ZnSnSe4
(AZTSe) and the (Ag,Cu)2ZnSnSe4 alloys as promising replacements
for CZTSSe to mitigate the band tailing and defect problems
[20,22,23]. While Ag is not considered to be earth-abundant, Ag use
is not likely to limit the implementation of AZTSe-based PV since it
is estimated to require less than 1/5 of the Ag per area (for a 1.5-mm
film) compared to c-Si PV technology (which typically uses ~ 20 g
per standard panel and accounts for ~ 90% of the PV market). Effi-
ciencies over 5% have been demonstrated with the n-type AZTSe
absorber material using a Schottky-type device configuration
where a high work function MoO3 contact is used for junction
formation [24]. While the previous study provided a proof-of-
concept device implementation, it did not delve into the depen-
dence of the PV performance and material properties on the
chemical composition of AZTSe.

In this investigation, the composition-dependence of AZTSe
material properties and device performance is studied. It is shown
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that the grain size scales with the Ag/Sn ratio in the absorber and
that insufficient Ag results in non-radiative recombination and de-
vice shunting. Additionally, samples with low Ag are found to
luminesce at lower photon energies, indicating either deeper bulk
defects or a band gap narrowing effect which could be caused by a
larger density of bulk defects. Both scenarios could be detrimental to
device performance. Finally, nanoscale compositional analysis of
the AZTSe surfaces via Auger nanoprobe microscopy (NanoAuger)
demonstrates evidence of surface decomposition into Ag-rich and
Zn-rich phases during the annealing process. KCN etch is found to
selectively remove potentially harmful Ag-rich secondary phases,
improving the overall PV performance. In addition, KCN etch
resulted in both top surface and grain boundary oxidation leaving
grain boundaries terminated by SnOx. While the formation of SnOx
along grain boundaries is beneficial in CZTSSe technology [25], in
AZTSe there may be a trade-off between helping (e.g. with grain
boundary passivation) and hindering (e.g. by obstructing Schottky
barrier formationwith high-work functionmaterials such asMoO3).
2. Experimental

Photovoltaic devices based on AZTSe absorbers were fabricated
on commercial SnO:F (FTO)-coated glass cleaned by etching in a
NoChromix/Sulfuric acid solution. Substrates were loaded into an
ultra-high-vacuum (UHV) system held at a base pressure of
10�9 Torr. High purity (>99.999%) Ag, Zn, Sn, and Se were co-
evaporated onto the substrates held at ~ 150 �C until the absorber
thickness reached ~ 1.5e2 mm. Then, samples were annealed in an
N2-filled glove box on a hot plate at ~450e500 �C in an excess Se
ambient to coarsen the grains, as described previously [26].
Following the anneal, the sampleswere subjected to a 3-min etch in
1 M KCN solution to remove secondary phases from the surface.
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Fig. 1. PV performance parameters of AZTSe solar cells including (a) VOC, (b) JSC, (c) fill factor
by cross-sectional EDX linescans of completed devices.
Photovoltaic (PV) devices utilizing these films were then fabricated
by deposition of ~20 nm thick MoO3 layer followed by ~ 100 nm of
In2O3:Sn (ITO) to produce a Schottky-type contact for the n-type
AZTSe absorber. The device characteristics weremeasured in a solar
simulator calibrated to 1 sun at room temperature after at least 60 s
of light soaking. Following the device fabrication and characteriza-
tion, the samples were cross-sectioned and energy-dispersive x-ray
spectroscopy (EDX) measurements were performed in a scanning
electron microscope (SEM) using a beam voltage of 10 kV. At least
three line-scans taken over several microns were averaged to pro-
duce an approximate composition measurement for the absorber.
Room-temperature photoluminescence (PL) measurements were
recorded using a Hamamatsu single-photon counting system
equipped with a 532-nm pulsed laser with a 1ns pulse width and a
15-kHz pulse rate. The spot size of this laser was ~ 1 mm.

Elemental analysis was performed using a Physical Electronics
PHI-700 Auger Nanoprobe microscope (NanoAuger) which enables
both Auger elemental mapping and spectroscopy with about 10 nm
lateral resolution. Details of the NanoAuger operation are given
elsewhere [27]. For elemental mapping, incident electron beam of
20 kV and 1.0 nA was rastered over the sample surfaces with 256
points per line and 256 lines per frame (256 � 256 data points).
During the measurements, chamber pressure was kept within
6 � 10�10e3 � 10�9 Torr. Intensities used for the composition
measurements were normalized to the relative sensitivity factors of
the elements' primary Auger peaks.
3. Results

A series of AZTSe samples were studied with compositions
ranging from Ag-poor to nearly stoichiometric. Fig. 1 summarizes
the relationship between the Ag/Sn ratio (measured by cross-
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Fig. 2. SEM cross-sections of samples with varying compositions: (a) Ag/Sn ¼ 1.50, Zn/Sn ¼ 1.03, (b) Ag/Sn ¼ 1.72, Zn/Sn ¼ 1.07, (c) Ag/Sn ¼ 1.85, Zn/Sn ¼ 1.15.
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sectional EDX line scans) and each of the important PV perfor-
mance metrics. As shown, there is a strong correlation between Ag
content and each performance metric, with the best results coming
from samples closest to stoichiometry (i.e. Ag/Sn ¼ 2). This is in
contrast to what has been observed in the sister technology,
CZTSSe, where samples with a Cu-rich stoichiometry always yield
poor PV performance and a Cu-poor and Zn-rich composition is
essential for high conversion efficiency [1,2,5]. Samples prepared
with Ag/Sn ratios significantly above 2 were found to be badly
shunted, likely due to inclusions of highly conductive Ag-Se and Ag-
Sn-Se phases. It is noted that, similar to CZTSSe, Zn-rich composi-
tions are still beneficial (see supplemental info).

Fig. 2 demonstrates one of the mechanisms whereby higher Ag/
Sn ratios result in better performance metrics. Ag-poor samples
tend to have smaller grains than those with more Ag. Large grains
are readily observed in the near-stoichiometric AZTSe films,
Fig. 3. (aec) Top-down SEM images of AZTSe samples prepared with various Ag fluxes durin
Sn ~ 2.4. (d) Comparison of grain size of AZTSe samples as a function of Ag/Sn ratio. (e) XR
secondary phases.
whereas they are not observed in CZTSSe in the absence of sodium.
In CZTSSe, Na-rich species segregate to the grain boundaries and
aid in grain boundary motion through a surfactant-type effect
[28e30]. In this study, no sodium was intentionally added to the
films. Therefore, it is believed that Ag-Se secondary phases may be
acting as a flux agent in this system, similar to the role of Cu2Se in
the CIGS system [31].

To further examine the effect of Ag excess on grain growth, a
series of samples was prepared with larger variations in the Ag
content. Fig. 3a-c displays top-down SEM images of the samples
where the Zn and Sn fluxes remained roughly constant during the
deposition while the Ag flux was increased by ~ 30% (Fig. 3b) and
~60% (Fig. 3c) relative to a control (Fig. 3a). The samples were
annealed and treated with a KCN etch prior to examination in SEM
and x-ray diffraction (XRD). There were several key observations.
First, there is a clear trend between grain size and Ag concentration
g deposition (after annealing and KCN etching): (a) Ag/Sn ~ 1.5, (b) Ag/Sn ~ 2.0, (c) Ag/
D patterns from the above samples after KCN etch, indicating incomplete removal of
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(Fig. 3d). By increasing the Ag flux during the deposition by 60%, the
average grain size after annealing more than doubled. This large
excess of Ag also, predictably, produced secondary phases as can be
seen in the XRD patterns despite the KCN etch. The main AZTSe
peaks are identified by the black reference pattern, and all peaks
not associated with AZTSe or the underlying FTO-coated substrate
can be attributed to ZnSe (same magnitude across all three sam-
ples), Ag2Se, and Ag8SnSe6 secondary phases (determined from
comparison with JCPDS standards, which scale with Ag content).
Ag-Se compounds are well-known superionic conductors display-
ing fast ion diffusion [32e36], and their presence along grain
boundaries would be consistent with accelerated grain boundary
motion and the creation of larger AZTSe grains. Notably, the KCN
etch appears to selectively remove these Ag-rich secondary phases.
Additionally, voids or grooves are observed in the SEM images
along the grain boundaries in the samples with excess Ag after the
KCN etch. These grooves offer further evidence to support that Ag-
Se compounds segregate along the grain boundaries and play an
important role in the AZTSe grain growth.

AZTSe is weakly n-type. AC field Hall measurement using
rotating parallel dipole line system [37] yields a carrier density of
~1012/cm3 and electron mobility (~100 cm2/Vs) [22]. The sign of the
Hall signal and the high mobility value confirm that the system's
majority carrier is electron. It has previously been shown that the
Fermi level moves away from the valence band (towards the
)a(

(c)

1.0

0.8

0.6

0.4

0.2

0.0

PL
 In

te
ns

ity
 (n

or
m

al
iz

ed
)

1.1.401.351.301.25
Photon Energy (eV)

Ag/Sn ratio

 1.63
 1.66
 1.71
 1.73
 1.79

8x104

6

4

2

0

PL
 In

te
ns

ity
 (c

ou
nt

s)

1.41.401.351.301.25
Photon Energy (eV)

Ag/Sn ratio

 1.78
 1.73
 1.72
 1.66
 1.63

Fig. 4. Room-temperature PL characteristics of AZTSe samples with Ag/Sn ratios between
normalized PL spectra f, (d) PL peak position as a function of Ag/Sn ratio.
conduction band, CB) with increasing Sn content [24]. The domi-
nant defect in this material is predicted to be the SnZn donor defect
[21], whichmay explain the observation that increasing the relative
Sn content in the film shifts the Fermi level towards the conduction
band, making the material appear more n-type. Increasing the
carrier density by increasing Sn should correlate with an increased
Voc in the devices. However, the data shows the opposite trend as
can be seen in Fig. 1. As discussed above, one explanation is the
effect of composition on grain size. Another potential explanation is
a change in bulk defect properties in the absorber layer.

As seen in Fig. 4a, b, increasing Sn (decreasing the Ag/Sn ratio)
results in a reduction of the PL intensity. This loss in PL indicates
increasing activation of a non-radiative recombination pathway,
which could include recombination at Sn-rich secondary phases in
the absorber or Sn-related deep defects. In general, non-radiative
recombination is frequently correlated with poor device perfor-
mance, consistent with the findings of this study. Furthermore, the
PL shifts towards lower photon energies at high Sn content
(Fig. 4c,d). This indicates an increase in the bulk defect density,
leading to a narrowing of the band gap and/or the presence of deep
bulk defects. The better-performing samples in this study were
correlated with the samples with higher PL intensity and photon
energy (i.e. higher Ag/Sn).

Although more reproducible PV performance was observed for
films treated by KCN ecth before device fabrication, the etching
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Fig. 5. NanoAuger secondary electron and elemental maps for Ag, Zn, Sn, O on (a) as-is and (b) KCN-etched AZTSe thin films. (c) Auger intensity linescan across grain boundaries in a
KCN-etched AZTSe sample. The line scan was taken from a region with minimal ZnSe coverage (denoted by the red dotted frame). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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mechanism is yet to be understood. To better understand the
mechanism of KCN reaction with the AZTSe surface, Nano-Auger
spectroscopy mapping was employed. Fig. 5 shows elemental
maps of the Ag, Zn, Sn, and O on different pieces of an un-etched
(Fig. 5a) and KCN-etched (Fig. 5b) AZTSe film. Several types of
phase segregation are evident.

First, the bright spots are observed in the SEM image are
correlated with local enrichment of Zn and Se (Se map not shown).
Thus, these bright spots are attributed to ZnSe. It is also notable that
the O signal from the ZnSe secondary phases is stronger after KCN
etch, indicating partial oxidation of these particles. The ZnSe pre-
cipitates are also present in the un-etched sample (Fig. 5a); in
addition, in the unetched sample the Ag and Sn signals are locally
enriched outside of the ZnSe regions. The KCN-etched sample
(Fig. 5b) shows more uniform Ag and Sn distributions in those re-
gions, indicating the removal of these potentially harmful com-
pounds condition with KCN improving device performance.

Second, the KCN etched sample is found to have local Sn and O
enrichment along the grain boundaries (Fig. 5c). Grain boundaries
in CZTSSe also exhibit enrichment of Sn and O [25,38], and this Sn-
O is believed to be important for CZTSSe grain boundary passivation
in that system [25,38,39]. While SnOx may also passivate grain
boundaries in AZTSe, the presence of this low work function layer
may hinder the formation of a Schottky barrier with MoO3, which
would thereby limit device performance. It is also notable that the
O signal from the ZnSe secondary phases is stronger after KCN etch,
indicating partial oxidation of these particles.

In conclusion, the Ag/Sn ratio is found to be a critical composi-
tional parameter in determining the efficiency of AZTSe-based thin
film photovoltaics. High, near-stoichiometry, Ag/Sn ratios are found
to (1) increase average grain size, (2) minimize non-radiative
recombination, and (3) prevent band gap narrowing or the for-
mation of deep defects. KCN etch is also found to be important in
achieving high conversion efficiencies. XRD and Nanoauger ex-
periments show that following annealing of the absorber, ZnSe and
AgSnSe secondary phases are present on the surface. KCN etch
selectively removed the Ag-rich secondary phases, leaving the Zn-
rich secondary phases behind mostly in the oxidized state. KCN
etch also induces enrichment of Sn and O along the grain bound-
aries and surface which may passivate the surface but leave a sur-
face layer which inhibits contact efficiency.
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