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Abstract—A comprehensive set of density functional theorgtacks and annealed-cooled-relaxed as describedbpsty.
(DFT) molecular dynamics (MD) simulations is pretsghfor The present DFT-MD simulations employed high-qyalit
interfaces between a-HjChigh-K oxide and QisGe s(001) amorphous HfQ sample generated by separate DFT-MD
with  several amorphous stoichiometric and subimelt-and-quench” runs described elsewhere [4-6F DFT-
stoichiometric SIOxNYy interlayers (a-Sj@Nos a-SiQ.4No4 MD simulations were performed using the VASP plaee
a-SgN,, a-SiN, and a-SiO) to determine their electricabimulation package using projector augmented-wdaA\W()
passivation properties. In general the sub-storobitic pseudopotentials (PP) and Perdew, Burke and Eroizerh
interlayers had superior electrical properties bseathey (PBE) exchange-correlation functional [7-14]. Thensity of
minimized Ge-O and Ge-N bond formation and had lostates was calculated with HSE06 exchange-cowelati
internal bond strain. The stack with oxygen defitia-SiO hybrid-functional [15-17].

interlayer demonstrated superior electric propetiecause it
avoided all dangling bond formation. Experimentaldges
confirmed that a sub-stiochiometric SiON layer éases the
defects density of Hf¢d001)/Sh sGey5(001) MOSCAPs.

For silicon nitride passivation, a comparison waaden
between a sub-stoichiometric N-deficient interlafgeHfO,/a-
SisN,/SiGe interlayer (see Fig la) and a fully-stoichébric
nitride interlayer (a-Hf@a-SikN4/SiGe) (see Fig 1b). While
the a-HfQ/a-SEN4/SiGe has multiple Ge-N bonds, the a-
) . HfO,/a-SEN,/SiGe has no Ge-N bonds since there are

To increase both n-channel and p-channel mobility fiicient Si atoms in the interface to satisfy Mllbonding.
advance logic devices have transitioned to SiGed&nFET However, the sub-stoichiometric a-Hi@SiN,/SiGe stack
structures. Formation of high-k gate oxide/SiGerfaces is a5 several pinning states (Fig. 2-a). The bandrdposed
challenging since germanium suboxide (GeDcontaining charge density for VB edge states [-0.7; -0.2] (skws that
_Gez) is known to induce electronic defects and it &y hey originate from a 3-fold under-coordinated ®ina and a
impossible to fully oxidize or nitride Ge to Gein the  g.fold coordinated Si atom with strained bondingilevtihe
presence of Si since .both O and N make strongedbtnSi -~ edge states [-0.2; +0.3] (eV) are induced byl8-tinder-
than Ge. An alternative approach is to form a maye or  qsrdinated Si atom and 6-fold coordinated Si ateith
bilayer of gmorphous S|O>§Ny between the h|gh_—ke;baflc strained bonding (Fig 3). For both energy intervalse
and the SiGe channel. This can be done by eithdd AL inning states are localized at the g\N&iSiGe interface and

silicon monolayers/bilayer or annealing of an SiG€O 4 he attributed to the significant interface defation.
interface to form a purely SiON layer [1-3]. Howeyvéhe

ideal composition of the SION layer is unknown. &Iy The HSE06 DOS curve shown in Fig 2-b for the
stoichiometric layer has the advantage of the wigessible Stoichiometric a-Hf@a-SgN,/SiGe stack (red curve) and a-
bandgap but its formation in the presence of exGessitoms HfO2/a-SgNo/SiGe (black curve). The DOS for the a-Hi®

l. INTRODUCTION

in the channel is problematic. SisN,4/SiGe stack still has pinning states in the bandgéae
HSEO6 band-decomposed charge density of the statesthe
[I.  DENSITY-FUNCTIONAL THEORY SIMULATIONS . VB [-0.2; +0.1] and near the CB [+0.1; +0.75] (e3fow they

DFT-MD simulations were employed to form bilay@f are both induced by the same 3-fold under-coordihdbe
a-SiQdNos a-SiQNos a-SiN,, a-SgN, and a-SiO atom (Fig 4). The pinning states are localized tet &-
interlayers on SiGe(001) by random placing O aratdins on SisN4/SiGe interface and consistent with the interface
SiGe(001), annealing stacks at 800K, cooling to &kd deformation. In sum, for both purely nitride intés, the
relaxing to the ground state configuration belowcéo ridged, strong bonds in the SiNx interlayer induced
tolerance level of 0.05 eV/A. The 3 bottom SiGeelaywere deformations in the top layer of SiGe which pintleel Fermi
fixed in the bulk-like positions and passivatedHbyatoms to level.
simulate continuous bulk. After interlayer formatjathe a-

HfO, sample was stacked on the relaxed interlayer/Si%g For silicon oxynitride passivation, a comparisorswiaade

tween a sub-stoichiometric O/N-deficient integlaya-



HfO,/a-SiQ /No /SiGe (see Fig 5-a) and a fully-inversion above 0 eV (Dit bump).caused by largesidgrof
stoichiometric SION interlayer a-Hi&-SiQ, Ny o/ SiGe (see interface traps closer to the edge of the condndband of
Fig 5-b). While the stoichiometric interface haé-N and 1 SiyGe5(001). This is consistent with sub-stoichiometric
Ge-O bonds, there are no Ge-O or Ge-N bonds irstire SiON improving the interface quality between SiGd aigh-
stoichiometric interface. The HSE06 DOS curves destrate k dielectrics.
that the a-Hf@a-SiQ, Ny /SiGe has an unpinned bandgap
with minor band-edge states (Fig. 6-a). The barabaposed _ . ) _
charge density of the VB edge states [0.0; +0.§) @ow The Comprehe_nswe DF_T-MD 5|mL_JIat|ons of mterfa(_:es
they originate at a 3-fold under-coordinated Gey(F). This Petween a-Hf@ high-K oxide and SiGe substrates with
Ge atom is located below a-Sil, #/SiGe interface loosing a Several amorphous interlayers (a-&#f%bs a-SiQ.Nos a-
bond to an Si atom, which switched its bond to @rat SiN2, a-SiN, and a-SiO) have been performed. HSE06
hybrid-functional DOS curves and band-decomposextgeh
The HSE06 DOS curve for the a-HI@SiQgNod/SiGe densities were calculated. The stack with oxygéditidat a-
stack (see Fig. 6-b) demonstrates a pinned interfaed SjO interlayer demonstrated the superior electriperties.
curve) with almost zero band-gap in contrast toaHéfO,/a- The O- and N-deficient a-SiNoy 4 interlayer and the N-
SiGNo4/SiGe stack (black curve). The HSEO6 bandieficient a-SiN, interlayer demonstrated better electrical
decomposed charge density of the VB [-1.0; -0.5] @B [- properties than the respective fully stoichiome#iSiQ sNo
0.5; 0.0] (eV) states demonstrates that for a#fO and a-SjN, interlayer. The sub-stoichiometric layers are
SiGpNo¢/SiGe the VB states are induced by a 3-fold undesuperior since they minimize Ge-O and Ge-N bonchédion
coordinated Ge atom and fully-coordinated Ge withised and minimize strain at the inter|ayedgja)'5(001) interface
bonding while the CB states are induced by the samatom and consequently disruption of substrate bondgekxental
with strained bonding (Fig. 8). Similar to the aM&ISiGe studies using an interlayer of SION formed byHNg) +
interface, the pinning defects are localized at the Sj,Cl; ALD confirmed that a sub-stiochiometric interfacan
SiOy gNp o/SiGe interface and caused by interface deformatioywer the defect density onggGe, 5(001).

For silicon oxide passivation, a sub-stoichiomet@e This work was supported by funding from Applied Ktls
deficient interlayer, the a-H#a-SiO/SiGe stack was and Rasirc Corporation.
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a) a-HfO,/a-Si;N,/SiGe b) a-HfO,/a-Si;N,/SiGe
HSE DOS (Ef=0 eV) HSE DOS (Ef=0 &V for red curve)

(811 e L B L L L N e e e e m B e e e e e e e e I B

120

100

80

PR IR U [ .V P IR N R Y ) HEPE IR PR PR P Y | P P
325215105005 1152 25 3 -3 252-15-1-050 051 15 2 25 :

" |

E(eV) E(eV)
o ' - , Fig. 2.a) HSE06 DOS for a-Hf@a-SiN./SiGe with N-deficient interlayer.
e T XK X8 Ef=0 eV. b) HSE DOS for a-Hffa-SEN,/SiGe with a fully-stoichiometric
Hf 81 O N Ge H interlayer.Ef=0 eV for the red curve only. The atirve was shifted to
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Fig. 7.HSE06 band-decomposed charge density for a-

a-HfO,/a-Si0, ;N ,/SiGe
HSE06 Band-Decomposed Charge Density
E=[0.0; +0.6] (eV)

HfO,/a-SiQ) /Ny 4/SiGe stack. The VB state at

[0.0;+0.6] eV is induced by a 3-fold under-coordéath
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Fig. 11. C-V characteristics of 3Ge) 5(001) MOSCAPs with 40 cycles of Hi@eposited by ALD. C-V spectra
of (a) HF cyclic clean and (b) 15 cycles of SINXBLDue to low substrate doping and large seriestease,
only the low-frequency C-V characteristics at 20-kPiz are shown here. SiON interfacial layer reduite size of

the false inversion capacitance (Dit bump) duenterfacial defects for Vg > OV.



