Sulfur passivation for the formation of Si-terminated Al2O3/SiGe(0 0 1) interfaces

Kasra Sardashti a,b, Kai-Ting Hu a,c, Kechao Tang d, Sangwook Park a,b, Hyonwoong Kim a,b, Shailesh Madisetti e, Paul McIntyre e, Serge Oktyabrsky e, Shariq Siddiqui f, Bhagawan Sahu f, Noami Yoshida g, Jessica Kachian g, Andrew Kummel a,*

a Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
b Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, United States
c Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
d Department of Materials Science and Engineering, Stanford University, CA, United States
e Department of Nanoscale Science and Engineering, University at Albany—State University of New York, Albany, NY, United States
f TD Research, GLOBALFOUNDRIES USA, Inc., Albany, NY, United States
g Applied Materials, Inc., Santa Clara, CA, United States

A R T I C L E   I N F O

Article history:
Received 9 September 2015
Received in revised form 13 December 2015
Accepted 14 January 2016
Available online 16 January 2016

Keywords:
Silicon–germanium
Sulfur passivation
Atomic layer deposition
Aluminum oxide

A B S T R A C T

Sulfur passivation is used to electrically and chemically passivate the silicon–germanium (SiGe) surfaces before and during the atomic layer deposition (ALD) of aluminum oxide (Al2O3). The electrical properties of the interfaces were examined by variable frequency capacitance–voltage (C–V) spectroscopy. Interface compositions were determined by angle-resolved X-ray photoelectron spectroscopy (AR-XPS). The sulfur adsorbs to a large fraction of surface sites on the SiGe(001) surface, protecting the surface from deleterious surface reactions during processing. Sulfur passivation (a) improved the air stability of the cleaned surfaces prior to ALD, (b) increased the stability of the surface during high-temperature deposition, and (c) increased the Al2O3 ALD nucleation density on SiGe, thereby lowering the leakage current. S passivation suppressed formation of Ge—O bonds at the interface, leaving the majority of the Al2O3–SiGe interface terminated with direct Si—O—Al bonding.

Published by Elsevier B.V.

1. Introduction

The demand for scaling complementary metal–oxide–semiconductor (CMOS) technology necessitates the application of thinner high-κ dielectrics and channel materials with higher electron or hole mobility in combination with novel device architectures, such as fin field effect transistors (FinFETs) and nanowire field effect transistors (NW-FETs) [1,2]. In contrast to some other high-mobility channel materials, such as Ge or III–V compounds, silicon-germanium (SiGe) alloys offer the tunability of band gaps and carrier mobilities through variations in the Ge content and subsequent tensile/compressive stresses [3]. In addition, compared to other potential channel materials, SiGe alloys can be more easily integrated into a Si CMOS process flow and have a relatively mature device fabrication technology, owing to its application in high-speed heterojunction bipolar transistors (HBTs) [4].Controlling the interface quality between high-κ dielectrics and SiGe alloys, particularly in nanoscale devices such as FinFETs, is the key to the integration of these materials into future CMOS technology.

To develop high-performance SiGe FETs, high-κ dielectrics should be used as gate dielectrics. Therefore, it is vital to reduce the density of the interface and near-interface traps between the high-κ gate oxide and SiGe channel layer [5]. The presence of Ge at the surface and within the native oxide makes high-κ/SiGe interface passivation challenging because of GeO2 water solubility and reliability issues caused by Ge out-diffusion through the gate oxide [6]. High-κ/semiconductor interface passivation has been extensively studied for various semiconductors, such as Ge, III–V compounds (i.e. GaAs, InGaAs, etc.) and III–N (i.e. GaN). Interface passivation can be achieved either by wet ex situ or dry in situ clean depending on the composition of passivating species and the physical form of their precursors. Sulfur passivation using wet ex situ (NH4)2S dip [7] or in situ H2S exposure [8] has been used to passivate semiconductor surface defects or trapping sites by forming —S covalent bonds to the substrate atoms. Ex situ S passivation
has been successfully applied to a wide range of semiconductors, including GaAs [9], InGaAs [10], GaN [11], and Ge [7], to improve the quality of their interfaces with high-k gate dielectrics, such as aluminum oxide (Al2O3), HfO2, HfON, etc. For Ge(001), S passivation results in a smaller equivalent oxide thickness (EOT), a smaller density of the interface traps, and the reduction of Ge−O bonding at the interface by passing the Ge dangling bonds via the formation of Ge−S, Ge−S−Ge, or Ge−S–H bonds, depending on whether dry or wet processing is employed [12–14]. Considering the presence of Ge atoms on the SiGe surface, S passivation can be an efficient method of high-k/SiGe interface passivation.

This study determines the effect of S passivation by ex situ (NH4)2S cleaning on the interface composition and electrical characteristics of Al2O3/SiGe(001). Al2O3 was deposited on SiGe at 120, 200, and 300 °C using atomic layer deposition (ALD). The electrical properties of the Al2O3/Si0.7Ge0.3(1 0 0) interfaces were characterized by capacitance–voltage (C−V) and current–voltage (I−V) measurements on metal oxide semiconductor (MOS) capacitors. The chemical compositions of the oxide/SiGe interfaces for different ALD temperatures in the presence or absence of (NH4)2S cleaning were determined by angle resolved x-ray photoelectron spectroscopy (AR-XPS). S passivation strongly prevented the formation of Ge−O interface bonding and assisted in the formation of direct Si−O−Al bonding between Al2O3 and SiGe.

2. Experimental details

A 12-nm-thick p-type Si0.7Ge0.3(1 0 0) with a doping level of 1 × 1018 cm−3 (Applied Materials) was grown epitaxially on p-type Si(1 0 0) by molecular beam epitaxy (MBE). No Si or Ge capping layer was deposited on the wafers following SiGe growth. Al2O3−SiGe metal–oxide–semiconductor capacitors (MOSCAPs) were fabricated through the ALD deposition of Al2O3 followed by 50-nm Ni gate deposition via thermal evaporation and 100-nm Al back contact deposition using DC sputtering. Prior to ALD, organic cleaning (30 s rinse by each of acetone, isopropyl alcohol, and DI H2O solutions followed by N2 drying) was followed by native oxide removal via cyclic HF cleaning using a 2% HF solution and DI water at 25 °C for 1 min in each solution for 2.5 cycles, ending with the HF dip. For ex situ S passivation, samples were dipped for 30 min in a 25% (NH4)2S solution at 25°C. The S passivation recipe has been optimized by investigating the MOSCAP characteristics as functions of (NH4)2S exposure time and the solution temperature (Supporting information, Fig. S1). To deposit thin Al2O3 using ALD, samples were transferred to the ALD chamber with minimal exposure to air (maximum 2 min). ALD was performed at 120, 200, and 300 °C in a Beneq TFS-200 continuous flow reactor with Ar as the carrier gas. The Al2O3 deposition started with 20 cycles of 45 ms Trimethylaluminum (TMA) pulses, followed by 30 consecutive cycles of 200 ms of TMA and 50 ms of H2O. After each TMA and H2O pulse, a 6-s Ar purge was employed. The chamber pressure during the ALD process was 1.7 Torr. The deposition rate determined by ellipsometry on a Si(100) monitor sample with 10, 50, and 100 nm of Al2O3 was 1.03 Å/cycle. Therefore, the oxide thickness is estimated as 3.1 nm. This thickness estimation is subjected to uncertainties due to the differences in the substrate used, as well as a larger thickness measured for ellipsometry. After fabrication, MOSCAPs were annealed in forming gas (5% H2, 95% N2) at 250 °C for 15 min. Details of the forming gas anneal optimization are given in the supporting information (Fig. S2).

C−V spectroscopy of the MOSCAPs was performed using an Agilent B−1500 semiconductor analyzer with an AC modulation amplitude of 30 mV in the gate bias range of −2 to 2 V at multiple frequencies, from 2 kHz to 1 MHz. Using the capacitance and conductance vs. gate voltage, the densities of the interface traps were calculated using the full interface state model with the Δ circuit of three complex elements method [15], and the density of the border traps (Nbd) was extracted by Taur’s model, assuming a spatially uniform trap distribution [16]. Gate leakage vs. gate bias was measured in the same bias range. To determine the composition of the Al2O3/Si0.7Ge0.3(001) interfaces as a function of the surface preparation method, AR-XPS and near-normal angle XPS were performed on SiGe samples after eight cycles of Al2O3 ALD. AR-XPS measurements were performed by a VG Theta Probe system using an Al-Kα excitation source (1486.7 eV). Si2p, Ge2p, Ge3d, Al2p, S2p, and O1s spectra were obtained at various take-off angles, starting from 26.75° to 79.25° with 7.5° steps. Near-normal angle XPS was performed using a monochromatic XM 1000 MkII/SPEHERA (by Omicron Nanotechnology) XPS system with an Al-Kα source (E = 1486.7 eV). For all measurements, a take-off angle of 30° from the sample surface was used.

3. Results and discussion

The effects of surface passivation on the electrical properties of Al2O3/SiGe interfaces were determined by C−V spectroscopy on the MOSCAPs. Fig. 1 shows the variable frequency C−V results at 2 kHz to 1 MHz for the samples with no surface cleaning (except organic cleaning to remove organic contaminants), HF only, and HF+(NH4)2S treatments followed by Al2O3 ALD at 120 and 300 °C. Compared with the samples with no surface cleaning (a, d), both HF (b, e) and HF+(NH4)2S (c, f) increased the maximum capacitance achieved in accumulation by removing the SiGe native oxide and reducing the total oxide thickness. For cleaned surfaces, increasing the ALD temperature from 120 to 300 °C resulted in a larger frequency dispersion at negative gate biases, where majority carrier (hole) accumulation occurs. This dispersion corresponds to the border traps, which are trap states located within the oxide layer near the interface with energy levels adjacent to the majority carrier band [17]. Similarly, the height of the low-frequency “bump” that appears in the C−V curves between 0 and +0.5 V corresponds to the density of the interface trap states [12,18]. While 300 °C ALD in the presence of native oxide resulted in a dramatic increase in the interface trap capacitance, for S-passivated surfaces, this change was fairly small.

Fig. 2 displays the density of the interface traps (Dit) as a function of the Fermi level position relative to the valence band edge, as extracted from the G−V characteristics of the devices shown in Fig. 1. Regardless of the surface preparation method, the largest densities of interface traps are concentrated at 0.25–0.4 eV above the valence band edge. Such a defect energy distribution is identical to the ones reported for Si dangling bond Pt centers at the SiO2/Si interfaces, which is consistent with the formation of Si−O−Al at the interface between SiGe and Al2O3 [19–24]. For HF-cleaned surfaces, increasing the ALD temperature to 300 °C results in a 5 × 1012 eV−1 cm−2 maximum density of interface traps, as opposed to only a 4 × 1012 eV−1 cm−2 maximum density for S-passivated surfaces. It is noted that at 120 °C, the Dit is nearly identical for both surface treatments, while the 300 °C results are consistent with S providing additional protection of the surface from unwanted reactions, such as substrate oxidation at an elevated temperature.

Additional electrical parameters derived from the variable frequency C−V measurements, including EOT, density of border traps (Nbd), and flat band voltage (VFB), are listed in Table 1. Nbd is extracted at a surface energy of E−E = −0.22 eV. For comparison, Nbd and VFB for ALD at 120 °C for samples with only organic solvent cleaning were included. Compared to the sample with no cleaning, HF cleaning and S passivation reduced the EOT by 35–40% to 2.1–2.25 nm, with the S-passivated sample having the
smallest EOT, at 2.09 nm. Consistent with a qualitative assessment of the C–V measurements in the accumulation region, a higher temperature for both cleaning methods doubles the density of the border traps. However, this difference could be partially due to the higher series resistance that increases the errors in the border trap calculations. In addition, higher ALD temperatures resulted in a 0.2–0.25 V shift in the flat band voltage for both samples. In sum, S passivation compared to the HF treatment resulted in a slightly smaller EOT (which could be due to thinner interfacial oxide and a higher equivalent dielectric constant), but the ALD at 120 °C was

![Fig. 1. Multi-frequency C–V measurements for Al₂O₃ on SiGe with no surface cleaning (a and d), HF surface treatment (b and e), and S passivation (c and f). Al₂O₃ ALD for (a–c) was performed at 120 °C and it was performed at 300 °C for (d–f).](image)

![Fig. 2. The density of the interface trap as a function of energy relative to the valence band edge for (a) HF-treated and (b) S-passivated Al₂O₃/SiGe interfaces with ALD performed at 120 and 300 °C.](image)

Table 1
Parameters extracted from the C–V measurements on SiGe samples with no cleaning, HF treatment, and S passivation. All standard errors are included. It is noted that the reported N_bt for the 300 °C sample may be increased in part by series resistance, even though this was incorporated into the model.

<table>
<thead>
<tr>
<th>Parameter/temperature</th>
<th>No cleaning</th>
<th>HF</th>
<th>HF + (NH₄)₂S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 °C</td>
<td>120 °C</td>
<td>300 °C</td>
</tr>
<tr>
<td>EOT (nm)</td>
<td>3.49 (±0.17)</td>
<td>2.23 (±0.1)</td>
<td>2.13 (±0.1)</td>
</tr>
<tr>
<td>N_bt (×10¹⁹ cm⁻³ eV⁻¹)</td>
<td>7.0 (±0.55)</td>
<td>6.2 (±0.5)</td>
<td>10.0 (±0.5)</td>
</tr>
<tr>
<td>V_F (V)</td>
<td>0.10 (±0.01)</td>
<td>−0.05 (±0.01)</td>
<td>0.14 (±0.01)</td>
</tr>
<tr>
<td>D_t (×10¹² cm⁻² eV⁻¹)</td>
<td>0.6 (±0.1)</td>
<td>1.7 (±0.2)</td>
<td>3.2 (±0.2)</td>
</tr>
<tr>
<td>Q_ox (×10¹² cm⁻²)</td>
<td>−0.69 (±0.06)</td>
<td>+0.37 (±0.06)</td>
<td>−1.5 (±0.19)</td>
</tr>
</tbody>
</table>
shown to be beneficial regardless of the surface treatment in terms of a lower density of interface and border traps.

Gate leakage currents \((I_g - V_g)\) for the two ALD temperatures with different surface passivation conditions were determined, as shown in Fig. 3. For HF-cleaned samples, raising the temperature to 300 °C increases the maximum leakage current in depletion \((V_g = -2 \text{ V})\) as well as in accumulation \((V_g = 2 \text{ V})\) by an order of magnitude. This is consistent with a decrease in the EOT by increasing the ALD temperature for HF-cleaned surfaces. In contrast, the leakage current for S-passivated interfaces is independent of the ALD temperature at almost all gate biases. In addition, the maximum leakage current in accumulation for S-passivated SiGe surfaces is one to two orders of magnitude smaller than the one for HF-treated surfaces with ALD at 120 °C to 300 °C. The gate leakage characteristics of S-passivated samples can be ascribed to the higher density and higher uniformity of Al₂O₃ nucleation on these surfaces, as opposed to H-terminated surfaces [25].

An air-stable passivated surface enables the transfer of wet cleaned wafers in ambient without decreasing the interface quality [26]. To determine the air stability, clean SiGe surfaces after HF and S treatments were exposed to air for 30 and 60 min prior to insertion into the ALD reactor and subsequent Al₂O₃ deposition. Fig. 4 displays the C–V characteristics of the Al₂O₃–SiGe MOSCAPs fabricated with air-exposed samples. For comparison, C–V measurements for samples with minimal air exposure (~2 min), as shown in Fig. 1, are displayed again, as in Fig. 4a and d. Qualitatively, the frequency dispersion of the C–V curves displays no change between the two surface preparation conditions as a function of air exposure. The \(D_{th}\) calculations shown in Fig. 5 suggest that air exposure for both HF-cleaned and S-passivated samples caused a ~30% increase in the maximum \(D_{th}\). However, the HF-cleaned sample showed a 0.7 × 10¹² eV⁻¹ cm⁻² lower \(D_{th}\) than S-passivated samples for long air exposures.

The EOT, \(N_{bt}\), and \(V_{FB}\) values for samples exposed to air between cleaning and ALD are listed in Table 2. For both H- and S-passivated surfaces, the EOT showed only 5% variations. Similar to the observation of EOT vs. ALD temperature, S-passivated Al₂O₃/SiGe interfaces have a lower EOT than HF-cleaned surfaces. For both passivation techniques, the \(N_{bt}\) levels varied by small amounts with longer air exposure times. However, the main advantage of

![Fig. 3. Leakage current vs. gate bias for ALD-Al₂O₃ with a deposition temperature of 120, 200, and 300 °C on (a) HF-treated and (b) S-passivated SiGe surfaces.](image)

![Fig. 4. Multi-frequency C–V measurements for Al₂O₃ on SiGe with 2, 30, and 60 min of air exposure between wet cleaning and Al₂O₃ ALD for (a–c) HF-treated and (d–f) S-passivated surfaces prior to ALD. The green dotted line indicates the zero gate bias.](image)
S passivation is the stability of the flat band voltage and oxide total charge ($Q_{ox}$). For HF-cleaned samples, after 30 or 60 min of exposure to air, $V_{FB}$ shifted by 450 mV (more than a $3.75 \times 10^{12} \text{ cm}^{-2}$ increase in negative charge). Conversely, S-passivated interfaces maintained a nearly constant $V_{FB}$ ($<120 \text{ mV}$ variation) with a maximum $1.25 \times 10^{12} \text{ cm}^{-2}$ increase in $Q_{ox}$. Large $V_{FB}$ and $Q_{ox}$ shifts can adversely affect device performance by largely changing the threshold voltage of the resulting devices [27]. Therefore, S passivation can be a promising surface preparation method for SiGe wafers in FET fabrication by extending the queue time by up to an hour.

The gate leakage current characteristics vs. air exposure time prior to ALD were evaluated, as illustrated in Fig. 6. The leakage current for HF-cleaned surfaces in accumulation increased more than an order of magnitude by exposing samples to air for 30 or 60 min (Fig. 6a). Conversely, the leakage currents for S-passivated samples at all gate biases had nearly zero change as a function of surface air exposure prior to ALD. Exposure to air increased the absolute difference between the gate leakage currents of HF-cleaned and S-passivated samples to more than two orders of magnitude.

To determine the role of surface passivation in the chemical bonding changes at the Al$_2$O$_3$–SiGe interface, Si2p, Ge3d, and Ge2p peaks were collected by AR-XPS over a range of take-off angles, as shown in Fig. 7. To prevent a strong attenuation of the SiGe substrate signals by the Al$_2$O$_3$ layer, only eight cycles of ALD, equivalent to a 0.8-nm thickness, were deposited on the samples at 120 °C. No post-deposition anneal (PDA) after ALD was performed on the samples shown in Fig. 7. The peak decomposition has been performed for Si2p, Ge3d, and Ge2p according to Refs. [28] and [29]. The Si2p peaks (Fig. 7a and b) for HF-treated and S-passivated interfaces show a shoulder between 101.5 eV and 102.5 eV at all take-off angles that correspond to SiO$_2$ (SiO and Si$_2$O$_3$) rather than stoichiometric SiO$_2$. This is consistent with the formation of Si–O bonds at the interface. Similarly, Ge3d peaks (Fig. 7c and d) show shoulders at 32 eV associated with GeO$_x$ (GeO and Ge$_2$O$_3$). However, S passivation resulted in a significant increase in the SiO$_x$–to-GeO$_x$ ratio.

### Table 2

<table>
<thead>
<tr>
<th>Parameter/air exposure</th>
<th>HF</th>
<th>2 min</th>
<th>30 min</th>
<th>60 min</th>
<th>HF + (NH$_4$)$_2$S</th>
<th>2 min</th>
<th>30 min</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOT (nm)</td>
<td>2.23 (±0.1)</td>
<td>2.09 (±0.1)</td>
<td>2.20 (±0.1)</td>
<td>2.09 (±0.1)</td>
<td>2.10 (±0.1)</td>
<td>2.00 (±0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{sh}$ ($\times 10^{10} \text{ cm}^{-2} \text{ eV}^{-1}$)</td>
<td>6.2 (±0.5)</td>
<td>5.5 (±0.5)</td>
<td>6.2 (±0.5)</td>
<td>5.8 (±0.5)</td>
<td>6.3 (±0.5)</td>
<td>6.6 (±0.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{FB}$ (V)</td>
<td>−0.05 (±0.01)</td>
<td>0.40 (±0.01)</td>
<td>0.40 (±0.01)</td>
<td>0.10 (±0.04)</td>
<td>0.22 (±0.04)</td>
<td>0.12 (±0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_{ox}$ ($\times 10^{12} \text{ cm}^{-2} \text{ eV}^{-1}$)</td>
<td>1.7 (±0.2)</td>
<td>2.7 (±0.2)</td>
<td>2.6 (±0.2)</td>
<td>2.0 (±0.2)</td>
<td>3.0 (±0.3)</td>
<td>3.3 (±0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{ox}$ ($\times 10^{12} \text{ cm}^{-2}$)</td>
<td>0.37 (±0.06)</td>
<td>−4.25 (±0.50)</td>
<td>−4.00 (±0.50)</td>
<td>−1.13 (±0.13)</td>
<td>−2.31 (±0.19)</td>
<td>−1.56 (±0.19)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5. The density of the interface trap as a function of energy relative to the valence band edge for (a) HF-treated and (b) S-passivated Al$_2$O$_3$/SiGe interfaces with 2, 30, and 60 min of air exposure between wet cleaning and ALD.

Fig. 6. Leakage current vs. gate bias for ALD-Al$_2$O$_3$ deposited at 120 °C on (a) HF-treated and (b) S-passivated SiGe surfaces with 2, 30, and 60 min of air exposure before oxide deposition.
at the interface (from 1.3 for HF-treated to 2.23 for S-passivated surfaces), leaving the Al2O3–SiGe interface almost exclusively terminated with Si–O–Al rather than Ge–O–Al bonds (details of the Ge3d peak decomposition are shown in Fig. S3). For S-passivated samples, it can also be hypothesized that a fraction of Si atoms at the interface forms Si–S–Al bonds. However, this cannot be quantified due to the overlap between Si–O and Si–S peak positions in the S2p spectrum. Due to the propensity to form H2S in the presence of atomic hydrogen, S is expected to be removed from the interface upon forming gas annealing.

In the case of Ge2p peaks, the difference between the intensity of the high-binding shoulder for HF-treated and S-passivated interfaces is more pronounced. The shoulders in Ge2p (Fig. 7e) for HF-treated SiGe surfaces are associated with the presence of sub-stoichiometric GeOx and stoichiometric GeO2. The GeO2 component has strongly been reduced by S passivation, leaving mostly peaks for Ge–O bonds behind (Fig. 7f). It should be noted that Ge2p photoelectrons have a lower kinetic energy with an inelastic mean-free path (IMFP) of 0.85 nm, which makes them very surface-sensitive [30]. Due to the 0.8-nm-thick Al2O3 surface layer, a large portion of the Ge2p signal might originate from the interior of the oxide or oxide surface. Therefore, the observation of a broad high-binding-energy shoulder for Ge2p peaks in Fig. 7e, particularly at grazing angles, such as 71.75° and 79.25°, is consistent with the presence of GeO2 (x ≥ 2) within or on top of the oxide. This high-binding energy peak is significantly suppressed for S-passivated surfaces at both 120 and 300 °C ALD temperatures (Fig. 7f, Supplemental materials Fig. S4). Ge out-diffusion and its incorporation into the high-k gate dielectrics is commonly observed and known to lower device reliability and increase gate leakage [31,32]. A similar experiment was repeated with 16 cycles of Al2O3 ALD, where trace amounts of the Ge2p signal were detected only at the most normal take-off angle of 26.75° (Fig. 5S), confirming that Ge out-diffusion from SiGe within Al2O3 limited to the first 0.8–1.0 nm of the oxide adjacent to the Al2O3/SiGe interface for deposition temperatures as low as 120 °C (with the assumption that the Ge 2p effective attenuation length [EAL] is less than 8.5 nm). Ge out-diffusion could occur during or after the ALD process, where Ge diffuses into the growing Al2O3 monolayer and moves with the growing layers to the top surface. It is also possible that Ge diffuses through the first few monolayers of the oxide when the last layers are grown (particularly in the case of 1.6-nm-thick oxide). Ge out-diffusion might also occur within the first few monolayers of Al2O3, while the sample is kept at 120 °C before removal from the ALD chamber. Accordingly, S passivation significantly reduced the Ge–O bonds at the interface and prevented Ge incorporation into the oxide, improving the interface quality.

To reproduce the forming gas annealing conditions, it is necessary to supply atomic hydrogen to the interface. For MOSCAPs, the Ni gate provides atomic H by catalyzing the reaction: H2 → 2H. However, performing XPS in the presence of metallic gates is challenging, particularly for 0.8-nm-thick oxides. Therefore, to simulate the forming gas annealing conditions for S-passivated SiGe surfaces, five cycles of TMA and H2O were dosed on the SiGe surface in UHV at 120 °C followed by annealing at 300 °C for 20 min and a 500-Langmuir atomic H dose at 330 °C (500 s at 1 × 10−6 Torr). After each of these processing steps, the surface composition was measured using in situ XPS at a 30° take-off angle (more normal angle).

Fig. 8 displays the Si2p, Ge3d, and Ge2p peaks at the four different processing steps, including S passivation (as-received), a 0.5-nm Al2O3 deposition, UHV annealing at 300 °C, and atomic H dosing on the sample at 330 °C. The SiOx/Si intensity ratio increased by 0.14 upon a 0.5-nm Al2O3 deposition, and it subsequently varied by only 0.02–0.03 throughout the processing steps (Fig. 8f, black columns). The position of the SiOx shifted to lower binding energies (larger SiO/SiOx fraction) after five cycles of Al2O3 deposition. While the GeOx 3d and 2p components also shifted to lower binding energies, they slightly decreased upon Al2O3 deposition. Furthermore, the GeOx/Ge3d was significantly reduced by UHV annealing and atomic H dosing (Fig. 8f, red columns).
simultaneous reduction in GeOx/Ge and the increase in SiOx/Si are consistent with the oxygen exchange from the Ge to Si surface atoms due to a higher thermal stability of the Si–O bonds than Ge–O at temperatures as high as 300 °C [34]. There was also a relatively large GeO2 peak in the Ge2p spectra that shifted to lower binding energies after Al2O3 deposition. However, after UHV annealing, it shifted back to its original binding energy, despite a reduction in its intensity. After annealing at 300 °C, the GeO2 is only observed in the surface-sensitive Ge2p signal and not in the bulk sensitive Ge3d spectra. As the EAL for Ge2p is 0.55 nm, which is comparable to the Al2O3 thickness (0.5–0.7 nm), this GeO2 component is likely to be localized at the interface, within or on top of the oxide. A substantial surface component is consistent with the Ge2p AR-XPS spectra in Fig. 7e, where a large GeO2 peak is observed at large grazing angles.

S passivation on Ge and many of the III–V surfaces causes the formation of surface →S bonds [35,36]. To determine the bonding state and surface coverage of S atoms, S2p peaks were measured by XPS at a 30° take-off angle for the four different processing steps in Fig. 8, as shown in Fig. 9a. There is residual S on the as-loaded sample surface, as well as at the Al2O3/SiGe interface, despite the Al2O3/SiGe interface. The S surface coverage has been estimated for the as-loaded sample as 0.54 ML, where ML is the fraction of a layer. As Si and Ge bond strongly to S [38], it is possible that S is bonded to the surface with single →SH bonds (Ge–SH and Si–SH) or bridge bonds (Ge–S–Ge, Si–S–Si, etc.). As S passivation resulted in improved insulating properties and nucleation densities both for 120 and 300 °C processing temperatures, it can be hypothesized that the majority of surface S termination is →SH; →SH is polar and negative partial charge on S atoms should electrostatically interact with the positively charged Al atoms in TMA, similar to →OH termination [39]. S coverage was reduced after Al2O3 ALD.

![Fig. 8. Si2p, Ge3d, and Ge2p spectra for S-passivated (a) as-loaded, (b) after five cycles of TMA and an H2O dose (b), (c) UHV annealing at 300 °C, and (d) 500 L of an atomic H dose at 330 °C.](image)

![Fig. 9. (a) S2p peaks from in situ XPS for various processing steps on the sample surface showing a very small amount of S. The S2p signal is normalized to the sum of the peak heights for Si2p and Ge3d. (b) The Al2p peak from the AR-XPS measurements at the take-off angle of 64.25°, showing the higher intensity of Al and therefore the nucleation density of Al2O3 on S-passivated SiGe surfaces compared to HF-treated surfaces.](image)
4. Conclusion

It has been shown that in the absence of S passivation, a lower ALD temperature results in a higher Al2O3–SiGe interface quality and lower gate oxide leakage for H-terminated SiGe. By applying ex situ S passivation using (NH4)2S, a much weaker dependence of interface quality and leakage current on the ALD temperature was observed. In addition, S passivation resulted in greater air stability of the cleaned surface against ambient oxidation. Specifically, for up to an hour of air exposure, VFB was maintained in the same range as the sample with no air exposure, showing the capability of this passivation in extending the device fabrication queue time. XPS measurements revealed that S passivation removes a large amount of Ge–O bonds at the Al2O3–SiGe interface, leading to direct bonding between them via Al–O–Si. Moreover, S passivation led to a higher nucleation density consistent with an order-of-magnitude smaller leakage current compared to H-terminated samples.

Acknowledgements

The authors would like to thank Dr. Bernd Fruhberger, Larry Grissom, Ivan Harris, and Sean Park of UCSB Calit2 for their assistance with ALD and metal deposition at the UCSB Nano3 cleanroom facility. SiGe wafers were provided by Applied Materials Inc. This work is partially supported by SRC–GRC Task 2451.001 and by a gift from Applied Materials Inc.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apsusc.2016.01.123.

References

[22] N.H. Thoan, K. Keunen, V.V. Afanas’ev, A. Stesmans, Interface state energy distribution and P2 defects at Si (1 0 0)–SiO2 interfaces: comparison to (1 1 1) and (1 0 0) silicon orientations, J. Appl. Phys. 109 (2011).


