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Contrast-enhanced ultrasound (CEUS) enables highly specific time-resolved imaging of vascula-

ture by intravenous injection of �2 lm gas filled microbubbles. To develop a quantitative auto-

mated diagnosis of breast tumors with CEUS, breast tumors were induced in rats by administration

of N-ethyl-N-nitrosourea. A bolus injection of microbubbles was administered and CEUS videos

of each tumor were acquired for at least 3 min. The time-intensity curve of each pixel within a

region of interest (ROI) was analyzed to measure kinetic parameters associated with the wash-in,

peak enhancement, and wash-out phases of microbubble bolus injections since it was expected that

the aberrant vascularity of malignant tumors will result in faster and more diverse perfusion

kinetics versus those of benign lesions. Parameters were classified using linear discriminant analy-

sis to differentiate between benign and malignant tumors and improve diagnostic accuracy. Prelim-

inary results with a small dataset (10 tumors, 19 videos) show 100% accuracy with fivefold

cross-validation testing using as few as two choice variables for training and validation. Several of

the parameters which provided the best differentiation between malignant and benign tumors

employed comparative analysis of all the pixels in the ROI including enhancement coverage,

fractional enhancement coverage times, and the standard deviation of the envelope curve differ-

ence normalized to the mean of the peak frame. Analysis of combinations of five variables demon-

strated that pixel-by-pixel analysis produced the most robust information for tumor diagnostics

and achieved 5 times greater separation of benign and malignant cases than ROI-based analysis.
VC 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.3692962]

I. INTRODUCTION

In the United States, cancer is one of the top leading

causes of death, second only to heart disease. In 2011,

1.6� 106 new cancer cases will be diagnosed and 600 000

deaths will be attributed to cancer.1 Early detection and

accurate diagnosis of cancer increase chances for survival by

allowing treatment of the disease before it metastasizes and

becomes intractable.2,3 Diagnostic accuracy is equally im-

portant to providing patients with optimal therapy and con-

trolling the rising cost of health care. Biopsy is the most

accurate method of diagnosing cancer, but this method is

invasive and is not always a viable option depending on the

location of the tumor.4–6

Medical imaging offers several modalities with the ability

to detect and diagnose tumors noninvasively, including mag-

netic resonance imaging, positron emission tomography, x

ray computed tomography, and ultrasound (US). Ultrasound

provides good spatial and temporal resolution, is nonionizing

and most affordable, allowing US to be safely performed on

patients as frequently as necessary.7,8 Recent advances over

the past decade with contrast-enhanced ultrasound (CEUS)

have significantly improved ultrasound’s diagnostic potential

for cancer by intravenously injecting �2 lm gas filled

microbubbles which, due to their size, are limited to the

intravascular space. When given intravenously, they enhance

all vessels including capillaries. Although capillaries cannot

be resolved, capillary filling with microbubbles causes

enhancement of perfused tissues. These properties allow for

highly specific time-resolved imaging of tumor vasculaturea)Electronic mail: akummel@ucsd.edu
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and perfusion.9–12 Since cancers exhibit accelerated metabo-

lism, they promote the development of new blood vessels;

different types of cancers will often possess characteristic

patterns to their vasculature which allow identification of the

tumor type with CEUS.13–15

Previous reports have shown that analysis of time-

intensity curves (TICs) can produce hemodynamic measure-

ments such as the area under the curve (AUC) and time to

peak (TTP) that have statistical significance between benign

and malignant lesions of various types of tumors.16–18 Since

the CEUS imaging signal is noisy due to many factors,

including speckle noise, motion, and fluctuations in the con-

centration of microbubbles, CEUS TIC analysis is nearly

always applied to the mean of the signal intensity within a

region of interest (ROI) surrounding the tumor.19,20 This

ROI analysis benefits from reduced noise and well behaved

TICs. However, because the signal intensity is averaged

across the tumor, this type of analysis is incapable of detect-

ing spatial heterogeneity across the tumor and is inherently

restricted to measuring perfusion parameters of the tumor as

a whole. This may limit the diagnostic potential of systems

relying on ROI analysis since intratumoral heterogeneity is

known to change with tumor progression.21–23

Instead of ROI analysis, CEUS videos have also been an-

alyzed on a pixel-by-pixel (P�P) basis where the enhance-

ment behavior of each pixel was analyzed and the CEUS

video was transformed into one or more parametric images.

Although P�P processing is more susceptible to noise and

motion artifacts, analysis of the TIC on a P� P basis allows

measurement of localized perfusion kinetics. For example,

Pollard et al. measured the time to 20% maximum replenish-

ment using CEUS destruction-reperfusion techniques in a rat

kidney model pre- and post-treatment to detect tumor

response to drug therapy.24 Ellegala et al. analyzed tumor

blood velocity, blood volume, and blood flow in a rat glioma

model by fitting their data to an exponential model and

showed that tumor blood velocity was typically lower and

fractional blood volume typically greater than surrounding

tissue.25 Pysz et al. employed the maximum intensity persist-

ence (MIP) algorithm and found that MIP imaging plateau

values correlated with ex vivo microvessel density analysis

and MIP imaging could detect tumor response to antiangio-

genic therapy as early as 48 h after dose administration in a

mouse model.26 Comparing the relative enhancement pat-

terns of focal liver lesions to normal liver tissue, Rognin

et al. were able to improve a clinician’s diagnostic accuracy

to 97% sensitivity and 91% specificity.27

In this study, CEUS time-intensity curves were analyzed

on a pixel-by-pixel basis to measure many hemodynamic pa-

rameters associated with the wash-in, peak enhancement,

and wash-out phases of the microbubble bolus injection to

detect the aberrant functionality of tumor vasculature. Linear

discriminant analysis (LDA) was employed to semiautomati-

cally classify CEUS videos as benign or malignant on the ba-

sis of these P�P TIC measurements. As far as we know,

this is the first report combining P�P TIC analysis with

LDA to develop a diagnostic system. This report also

employs the standard deviations of the hemodynamic param-

eters and correlated measurements to improve the separation

of benign and malignant classifications; these advances were

enabled by combining motion correction with novel software

noise suppression techniques.

II. METHODS

A. ENU rat tumor model

Sprague-Dawley rats were intraperitoneally injected with

either a high (180 mg/kg) or low (45.5 mg/kg) dose of

N-ethyl-N-nitrosourea (ENU, Sigma-Aldrich, St. Louis,

MO), a well known carcinogen that frequently generates

tumors in mammary glands; the high dose more frequently

generates malignant tumors, and the low dose generates a

mix of benign and malignant tumors.28–32 This study

included the assessment of three rats with one benign tumor

each and seven rats with one malignant tumor each that

occurred between 6 weeks and 9 months after treatment with

ENU. The tumor cross sectional areas as measured under

ultrasound were approximately 1.50 6 0.87 cm2 for benign

tumors and 2.37 6 2.28 cm2 for malignant tumors

(mean 6 standard deviation) and the difference between be-

nign and malignant tumor sizes were not statistically signifi-

cant (P> 0.05). Tumors that arose external to the mammary

glands were excluded from the study.

All animals were euthanized immediately following their

final ultrasound scan. Tumor tissue was dissected and sec-

tioned at an orientation corresponding to the plane of the

ultrasound image. The tissue was fixed in 10% formalin so-

lution and embedded in paraffin. Histological slides of 5 lm-

thick tumor slices were prepared and stained with hematoxy-

lin and eosin in a standard fashion. All histologic processing

was carried out by the UCSD Histology Core in the Moores

Cancer Center. Histopathologic examinations of the tumors

were limited to a malignant or benign diagnosis and were

conducted by a skilled observer blinded to the US findings

or ENU dose. The criteria included nuclear size, invasion of

surrounding tissue, appearance of breast tissue ducts, and

cell size.

B. Ultrasound imaging

Animals were anesthetized using inhaled isoflurane gas.

Animals were unrestrained except when specific positioning

was required to image the tumor, in which case tape was

used to fix the animal’s position. Ultrasound imaging was

performed using a Philips iU22 equipped with a L12-5 probe

(Philips Medical Systems, Bothel, WA). The tumor imagin-

ing plane was chosen such that breathing motion was within

the plane of imaging rather than across plane to allow for

motion correction. The largest cross section of the tumor

avoiding large cysts or obvious necrotic areas was chosen.

Images were optimized by adjusting the field of view and

gain. Once optimized, the transducer was mechanically fixed

in position and control settings were not changed. A

contrast-specific imaging mode was employed that transmit-

ted unique pulses that resulted in unique signals from micro-

bubbles to allow the subtraction of tissue signals in real-
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time. Because contrast specific modes resulted in blank

images, a dual display depicted two images of the identical

slice, one processed in standard B-mode for tissue imaging,

and one processed for microbubble image. Imaging was

acquired at 7 MHz, 0.06 mechanical index (MI) for contrast

and 0.02 MI for B-mode, 6 Hz frame rate, with typically a

38 dB dynamic range, and the focal zone positioned at the

depth of the tumor. These parameters resulted in a resolution

along the depth (axial) and across the plane (lateral) of

0.6� 0.6 mm, and a slice thickness of 1.6 mm at the focal

zone.33 With the cine capture turned on, a single bolus injec-

tion of ultrasound contrast was administered through the tail

vein followed with a 2 mL saline flush, and the recording

continued for 3 min to observe the wash-in and wash-out ki-

netic through the tumor slice. The cine clips were stored as

videos with the Microsoft Video 1 (CRAM) lossy compression

codec.

Multiple videos were collected of most rats to increase

the sample size to 19 videos: Tumor histology revealed the

benign or malignant nature of the tumor: 5 videos of 3 be-

nign tumors and 14 of 7 malignant tumors (Table I). Contrast

agents used included BR38 (0.1 mL of stock solution, �107

microbubbles), BR55 (0.1 mL of 1:10 dilution, �107 micro-

bubbles), and SonoVue (0.1 mL of stock solution, �107

microbubbles) all from Bracco (Bracco Imaging SpA, Mi-

lano, Italy), Definity (0.2 mL of 1:10 dilution, �109 micro-

bubbles) (Lantheus Medical Imaging, Billerica, MA), and

Visistar (0.15 mL of stock solution, �108 microbubbles) and

Visistar VEGFR2 (0.15 mL of stock solution, �108 micro-

bubbles) (Targeson, La Jolla, CA). All animals that were

multiply imaged received at least one untargeted contrast

agent and one targeted contrast agent. Out of the 5 videos of

benign tumors, 3 (60%) employed untargeted microbubbles

and 2 (40%) employed targeted microbubbles, similarly, 8

(57.1%) and 6 (42.9%) of the 14 videos of malignant tumors

employed untargeted and targeted contrast agents, respec-

tively. Since the microbubble kinetics of untargeted and tar-

geted microbubbles administered across benign and

malignant cases were only observed for only 3 min, their use

should not bias the classification results. In the worst case,

the use of targeted and nontargeted microbubbles should add

variance to the perfusion measurements, reducing classifica-

tion performance. In fact, malignant tumors had a faster

washout than benign tumors, which was the opposite of what

would be expected when targeted microbubbles are given

that should accumulate in malignant tumor. Therefore the

use of targeted microbubbles likely dampened the wash-out

difference that was observed. Repeat injections were admin-

istered at least 10 min after the previous injection to provide

ample time for the previously injected microbubbles to be

cleared from circulation.

C. Image analysis

Analysis of contrast-enhanced ultrasound videos was per-

formed using custom software developed in MATLAB (Math-

works, Natick, MA). The variables employed to characterize

the TIC are listed in Table II. The time-intensity curves were

analyzed following motion correction on a pixel-by-pixel ba-

sis to measure several hemodynamic parameters associated

with the wash-in, peak enhancement, and wash-out phases of

the microbubble bolus injection to detect the aberrant func-

tionality of tumor vasculature. TIC analysis on a pixel-by-

pixel basis allows measurement of the local perfusion

kinetics, but it is more susceptible to noise, speckle, and

motion inherent to CEUS compared to previous reports of

CEUS TIC analysis which applied only to the spatial mean

of the intensity within a ROI surrounding the tumor.19,20 Pre-

vious P�P based reports handled the problem of noise by

either discarding misbehaving pixels,34 fitting their data to

simple mathematical models,24,25 or by employing variables

that were relatively insensitive to fluctuations within the sig-

nal.27 In this report, noise was handled by two key prepro-

cessing steps: (1) optimal selection of the reference frame

independently for each video for accurate motion correction

and (2) using noise filters optimized for each parameter.

1. Image registration

To minimize the impact of breathing motion on pixel-

based measurements, an affine image registration technique

that maximizes mutual information was applied to correct

lateral motion throughout each CEUS video.35 Image regis-

tration was performed on B-mode images (tissue image),

and the resulting transformation parameters were applied to

the contrast-specific images (microbubble only image).

Rather than registering all frames sequentially36 or arbitra-

rily choosing a single reference frame37 as in previous

reports, a unique image registration system was employed.

All frames were registered to a single reference frame that

was chosen by sampling 100 frames throughout each video

TABLE I. Animal ID, histology of the tumor, video ID, contrast agent used,

and targeting of the contrast agents are listed.

Rat Histology Video Agent Target

1 Malignant
1 BR38 None

2 BR55 VEGFR2

2 Malignant
3 BR38 None

4 BR55 VEGFR2

3 Benign
5 BR38 None

6 BR55 VEGFR2

4 Benign
7 BR38 None

8 BR55 VEGFR2

5 Malignant
9 BR38 None

10 BR55 VEGFR2

6 Malignant
11 BR38 None

12 BR55 VEGFR2

13 SonoVue None

7 Benign 14 BR38 None

8 Malignant
15 BR38 None

16 BR55 VEGFR2

9 Malignant 17 Definity None

10 Malignant
18 Visistar None

19 Visistar

VEGFR2

VEGFR2
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and finding the frame which presented the greatest sum of

squared correlation with all other sample frames. This addi-

tional selection criterion had the benefit of choosing a mini-

mally disrupted reference point relative to the remaining

image frames.

Although pixel similarity based registration methods such

as this are computationally expensive, they eliminate the

requirement for manual placement of fiduciary markers by

an observer or a priori extraction of anatomic features as

with feature based registration methods. Additionally, it has

been shown that image similarity based techniques perform

at least as well as feature based registration methods.35,38,39

Table III shows the total sum of squared differences of

B-mode pixel intensities from frame to frame as a metric of

motion pre- and post-motion correction. Although motion

was minimal prior to image registration (due to anaesthetiza-

tion and immobilization of the rat and imaging probe),

motion was further reduced after image registration was

applied as indicated by the reduced sum of squared differ-

ence (SSD) values. Figure 1 shows the integrated intensity

of each pixel over all frames within video 2 (a) pre and (b)

post image registration. With the integrated intensity algo-

rithm, motion within the videos should cause features to blur

in the direction of motion. Although video 2 had the greatest

percent decrease in SSD scores after motion correction, the

two integrated intensity images look nearly identical and fea-

tures can be seen sharply in both images, indicating that the

premotion corrected videos were fairly stable. Even though

minor motion artifacts were still present after image registra-

tion, the small fluctuations in intensity were filtered out by

the low-pass filtering technique described below.

2. Time-intensity curve processing and analysis

The compressed video signal of each pixel passed through

one of three possible preprocessing steps depending on the

kinetic parameter ultimately being measured: unprocessed;

low pass filtering; and envelope curve detection. In Fig. 2,

the effects of these preprocessing steps are demonstrated

with TICs from a single representative pixel of a typical be-

nign and malignant video. (1) The unprocessed TIC was

used for a few measurements to quantify the fluctuations in

the signal, e.g., the standard deviation of intensity (ISD) of

each pixel over time. (2) To reduce the impact of noise arti-

facts, the video signal of each pixel was filtered with a low

pass filter designed with a cutoff frequency at 0.125 Hz to

eliminate noise spikes while preserving the shape of the

bolus injection curve. Low pass filtering was used in the

majority of measurements to capture the characteristics of

the TIC. (3) An alternative step to low pass filtering was the

calculation of an envelope function which captures the

local peaks in the data and was subsequently used in

TABLE II. This table lists the kinetic measurements employed to parameterize the TIC, their acronyms, and the signal processing step(s) for each variable, and

the effect of pixel-by-pixel measurement on the mean of each measurement. Throughout this report, variable acronyms suffixed with “_m” or “_s” indicate the

mean or standard deviation of the pixel-by-pixel measurements within the ROI, respectively.

Acronym Full name Processing Pixel

PI peak intensity LPF No

TTP time to peak LPF No

AUC area under the curve LPF No

AUCWO area under the curve: wash-out LPF No

FWHM full width at half maximum LPF No

PGWI peak gradient: wash-in LPF No

PW peak width LPF No

MTT mean transit time LPF No

WOT80 wash out time to 80% of peak LPF No

WOT50 wash out time to 50% of peak LPF No

WOT20 wash out time to 20% of peak LPF No

DIWO15 drop of intensity: wash out to 15 seconds LPF No

ISD standard deviation of intensity UNP Yes

ISDN standard deviation of intensity normalized to peak intensity UNP Yes

AUOC area under the original TIC curve UNP No

AUEC area under the envelope curve ENV No

OEDN envelope curve difference normalized to the mean of the peak frame UNP & ENV Yes

PGWONM peak gradient: wash-out normalized to the mean of the peak frame LPF No

PSWINM peak slope: wash-in normalized to the mean of the peak frame LPF No

OEDNM envelope curve difference normalized to the mean of the peak frame UNP & ENV Yes

TOA time of arrival THR No

FECT_10 fractional enhancement coverage time: 10% THR Yes

FECT_20 fractional enhancement coverage time: 20% THR Yes

FECT_50 fractional enhancement coverage time: 50% THR Yes

FECT_80 fractional enhancement coverage time: 80% THR Yes

FECT_90 fractional enhancement coverage time: 90% THR Yes

Coverage coverage THR Yes
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envelope-curve related metrics. Measurements acquired

from the envelope curve or the unprocessed data were used

to quantify the fluctuations in the TIC caused by changes in

microbubble concentration in each pixel. The processing

steps applied for each variable are shown in Table II.

Following the above steps, the data were linearized to

reverse the data compression employed by ultrasound

imagers, producing a TIC linearly proportional to the ultra-

sound signal power and concentration of contrast agents.40

Measurements of perfusion kinetics were mostly derived

from these linearized TICs. In addition to the filters, to

improve the robustness of the dataset against noise, multiple

correlated variables were employed to make similar meas-

urements. For example, multiple wash-out time (WOT)

measurements were acquired which measure the time span

between peak intensity to different percentages of peak in-

tensity, e.g., 80% (WOT80), 50% (WOT50), and 20%

(WOT20) of peak intensity. To quantify the overall tumor

behavior as well as the tumor heterogeneity, the mean and

standard deviation of each kinetic parameter was calculated

within a ROI. The ROI was manually defined and tightly

encompassed the enhanced perimeter of the tumor, but

excluded any shadowed portion in the mid or far field. Ne-

crotic regions of the tumor were included within the ROI,

and all pixels within the ROI were used in TIC analysis.

A few of the basic kinetic differences between benign and

malignant tumors in the ENU rat tumor model are readily

observed in Fig. 2. Compared to the sample TIC from the be-

nign tumor, the malignant tumor has a much higher peak in-

tensity (PI) and reaches this peak intensity much more

quickly. Since the intensity of the received ultrasound signal

is proportional to the concentration of microbubbles within a

pixel, and since microbubbles are limited to the intravascular

space, a higher PI indicates greater fractional blood volume.

Furthermore, the time it takes to reach peak intensity is

inversely proportional to the blood flow velocity: faster

blood flow velocity results in lower TTP measurements and

vice versa. These observations were consistent with the ex-

pectation that malignant tumors are highly vascularized with

large blood pools and high rates of blood flow. The noise in

the single pixel data also helped discriminate between be-

nign and malignant tumors including; for example, the stand-

ard deviation of the intensity normalized to the peak

intensity of each pixel (ISDN)—a variable that measures the

fluctuations of the intensity of each pixel over time. Abnor-

malities in malignant tumor vasculature such as shunts and

TABLE III. Total sum of squared differences (SSD) from frame to frame of

B-mode intensities within the tumor region of interest pre- and post-image

registration. Due to anaesthetization and immobilization of the rats and US

probe, there was little motion within the video other than minor breathing

motion. Image registration lowered the SSD values, indicating reduced

motion.

Video SSD pre (� 108 a.u.2) SSD post (� 108 a.u.2) Percent decrease

1 28.0 20.2 � 27.8%

2 22.6 14.0 � 38.2%

3 10.7 8.22 � 23.4%

4 7.77 6.85 � 11.8%

5 3.37 2.99 � 11.2%

6 2.81 2.51 � 10.5%

7 6.52 5.57 � 14.5%

8 6.80 5.43 � 20.1%

9 3.33 2.65 � 20.5%

10 6.01 5.17 � 14.0%

11 22.5 15.9 � 29.4%

12 13.4 10.2 � 23.6%

13 15.3 11.9 � 22.6%

14 8.09 5.85 � 27.7%

15 9.83 8.16 � 17.0%

16 17.8 15.1 � 15.2%

17 64.5 48.7 � 24.5%

18 31.2 21.9 � 29.7%

19 25.4 18.9 � 25.5%

FIG. 1. Integrated intensity of B-mode frames pre and post image registra-

tion. The intensity of each pixel was integrated over all frames within video

2 (a) pre and (b) post image registration. With the integrated intensity algo-

rithm, motion within the videos should cause features to blur. Although

video 2 had the greatest percent decrease in sum of squared difference

scores after motion correction (Table III), the two integrated intensity

images looked nearly identical; features can be seen sharply in both images.

FIG. 2. (Color online) Time-intensity curve preprocessing. Sample process-

ing of the compressed video signal from a single representative pixel from a

typical (a) benign and (b) malignant video. TICs for each pixel were either

low pass filtered (LPF) or the envelope curve (EC) was detected prior to lin-

earization. LPF allowed characterization of the overall wash-in and wash-

out perfusion patterns, while EC and the unprocessed signal allowed detec-

tion of transient fluctuations in concentration of the contrast agent.
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variable sized capillaries lead to aberrant functionality and

flow rates with greater spatial and temporal heterogeneity

which were reflected in the ISDN measurements.

3. Image domain analysis

In addition to the quantitative measurements of the TIC,

to capture parameters that mimic human eye observations,

several measurements were derived from image threshold

based techniques applied to the log-compressed video inten-

sity signal. To determine a good threshold value for each

video, the Otsu threshold method41 was applied to the first

frame to achieve an integrated intensity at the midpoint

between pre- and peak-enhancement under the assumption

that this frame would contain a combination of enhanced

and unenhanced pixels. Subsequently, this threshold value

was applied to all frames to consistently segment the pixels

with sufficient contrast enhancement from background. This

enhancement information was applied to measure the time

of arrival (TOA) of contrast agents, tumor enhancement cov-

erage, and the various fractional enhancement coverage time

(FECT) measurements. Similar to TIC analysis, the mean

and standard deviation were used to summarize tumor TOA

measurements, whereas coverage and FECT measurements

already yield a single scalar value for the tumor ROI.

D. Classification

1. Classification optimization of cross-validation error

Linear discriminant analysis (LDA) was employed to

classify the videos as either benign or malignant based on

the kinetic measurements. As described above, means and

standard deviations of the TIC measurements as well as

threshold based measurements were used as input to the

LDA classifier. All possible combinations of one or two vari-

ables were tested to determine the most predictive sets by

performing a fivefold cross validation.

2. Classification optimization with the Fisher
discriminant criterion

In order to further characterize performance of LDA clas-

sification with more than two variables, subsets composed of

combinations of five variables were ranked based on the

Fisher linear discriminant criterion function:

J ¼ lM � lBj j2

S2
M � S2

B

; (1)

where mM, mB, SM, and SB are the means and scatters of the

LDA score for malignant and benign tumors, respectively.

To investigate the relative importance of pixel kinetics, ev-

ery combination of five variables were entered into the LDA

classifier for training and ranking (>30� 106 combinations).

Combinations were arbitrarily limited to five variables to

limit the time requirement of processing. These combina-

tions of variables were manually categorized into four

groups: mean-based variables versus standard deviation-

based variables; and nonpixel-by-pixel (non-P�P) variables

versus P�P variables. The groups were designed to quantify

the importance of the pixel-by-pixel kinetics because most

of the mean-based measurements (for example, peak inten-

sity (PI) and AUC) do not benefit from analyses of individ-

ual pixel TICs and can be mimicked by analyses that take

the mean of the intensity within the ROI prior to analysis,

similar to previously published reports. In contrast, standard

deviation-based measurements are only possible when meas-

uring on an individual pixel basis. Furthermore, a few mean-

based TIC variables, such as the ISD, benefit from pixel

based measurements; by categorizing these variables with

the standard deviation-based variables, a new group was

formed containing all of the P� P variables, while the

remaining mean-based variables formed the non-P� P varia-

bles group.

III. RESULTS AND DISCUSSION

A. Classification optimization of cross-validation
error

Fivefold cross-validation error was the first metric used to

optimize linear discriminant analysis classification of benign

and malignant tumors; results are summarized in Table IV.

With fivefold cross-validation, the videos were split into five

random partitions, and validation was performed five times.

In each iteration of the validation, one of the five partitions

was selected as the test set, and the remaining four were

used for training, and the validation error rates were aver-

aged into a single cross-validation error rate. With a single

variable, mean transit time (MTT) and the standard deviation

within the ROI of the envelope curve difference normalized

to PI (OEDN_S), both had 15.8% error rate while TOA,

FECT variables, and coverage each individually achieved

10.5% error rate. The TOA and the FECT variables

measured similar tumor physiology: the length of time

required for the tumor to reach a certain level of enhance-

ment; therefore, these variables were all indirect measures of

the blood flow rate within the tumor. The coverage variable

measured the portion of the tumor that was enhanced, and,

therefore, was a measure of the vascularity of the tumor. All

of the individual variables that achieved 10.5% error rate

were derived from threshold based measurements. These

results suggest that information pertinent to tumor diagnosis

was available from within the log-compressed imaging

domain.

TABLE IV. Cross-validation error rates from linear discriminant analysis

classification of benign and malignant tumors using combinations of one or

two variables. With as few as two variables, a 0% cross-validation error rate

was achieved within the small dataset of 19 videos.

LDA input CV error

1 variable: (MTT_M), (OEDN_S) 15.8%

1 variable: (TOA_M), (FECT50),

(FECT80), (FECT90), (coverage)

10.5%

2 variables: (FECT50 & FECT90),

(MTT_M & ISDN_M)

0%
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By using two variables, the LDA achieved 0% error with

either a combination of FECT50 and FECT90 variables or

MTT and temporal standard deviation of the intensity nor-

malized (ISDN). Since the FECT50 and FECT90 variables

measure similar properties of the TIC, these variables were

highly correlated (R¼ 0.96). Nevertheless, the combination

of these two variables together achieved a greater cross-

validation accuracy than either measurement alone, indicat-

ing that correlated measurements can potentially reduce

noise within the data, providing more accurate results. MTT

and ISDN (R¼ 0.26) represent the expected scenario that or-

thogonal parameters can improve class discrimination. Due

to the small video sample size, cross-validation error tests

were limited to combinations of two variables since error

rates of 0% were already achieved under these restrictions;

therefore, further improvement required optimization of the

separation between the two classes, benign and malignant.

B. Classification optimization with the Fisher
discriminant criterion

To further optimize the separation between benign and

malignant tumors with linear discriminant analysis, the

Fisher discriminant criterion [Eq. (1)]—which quantifies the

separation between classes as the separation of the means

normalized by the sum of the standard deviations of the

classes—was maximized in the following tests. After divid-

ing the kinetic parameters into five groups of variables

(mean based, standard deviation based, non-P�P, P� P,

and all variables), the best combination of five variables was

determined for each of the groups, and the results of the

resubstitution classification were plotted as histograms in

Fig. 3. A few image domain based measurements (TOA_M,

TOA_S, and coverage) appear within the lists, again demon-

strating their utility in differentiating between benign and

malignant lesions.

Comparing the two groups composed of all mean varia-

bles and all standard deviation variables, the group with

standard deviation based variables achieved slightly better

separation. However, among the variables selected in the

mean based group was the intensity standard deviation nor-

malized ISDN, which measured the standard deviation of the

intensity of each pixel over time normalized to the peak in-

tensity and was sensitive to fluctuations in the TIC signal

that can only be detected when performing pixel based proc-

essing. When comparing P�P based variables against non-

P�P variables, the former considerably outperformed the

latter by providing an interclass separation with Fisher dis-

crimination criterion over five times larger (18.8 vs 106,

respectively). These results clearly show that pixel based ki-

netic measurements contained important information perti-

nent to tumor diagnosis. As discussed earlier, tumors can

display both spatial and temporal heterogeneity in their

hemodynamics. Since the non-P� P variables calculated the

mean of the measurements across the tumor, they could not

detect spatial heterogeneity and were fairly insensitive to

temporal heterogeneity. In contrast, the standard deviation

based variables measured the variance of hemodynamics

across the tumor, and certain P�P variables were particu-

larly sensitive to temporal heterogeneity, including the

FIG. 3. (Color online) Performance of LDA classifier. Histograms showing results of the LDA classification of five variables in LDA space. The top combina-

tion from each of the groups are presented in the order of increasing Fisher discriminant criterion, which quantifies the separation of the classes by the separa-

tion of the means normalized by the sum of the standard deviations: (a) nonpixel-by-pixel (18.8); (b) mean based (35.8); (c) standard deviation based (38.4);

(d) pixel-by-pixel (106); and (e) all variables (281). Note the differences in the scale of the x-axis. The combinations of variables chosen for the five groups

were (a) non-P�P (AUCWO_M, MTT_M, WOT80_M, AUOC_M, TOA_M); (b) mean-based (MTT_M, WOT50_M, DIWO15_M, ISDN_M, AUEC_M);

(c) SD-based (FWHM_S, MTT_S, WOT50_S, OEDNM_S, TOA_S); (d) P�P (PGWI_S, ISDN_S, PGWONM_S, PSWINM_S, coverage); (e) all

(FWHM_M, PW_M, WOT80_M, OEDN_S, coverage). AUCWO: area under the wash-out curve; MTT: mean transit time; WOT50, 80: wash-out time to 50

and 80% of peak; AUOC: area under the original TIC curve; TOA: time of arrival; DIWO15: drop of intensity wash out to 15 s; ISDN: standard deviation of

intensity normalized to peak; AUEC: area under the envelope curve; FWHM: full width at half maximum; OEDNM: envelope curve difference normalized to

the mean of the peak frame; PGWI: peak gradient wash-in; PGWONM: peak gradient wash-out normalized to the peak frame; PSWINM: peak slope wash-in

normalized to peak frame; PW: peak width; _M: mean within the ROI; _S: standard deviation within the ROI.
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standard deviation of the intensity normalized to the peak in-

tensity of each pixel (ISDN) and the standard deviation of

the envelope curve difference normalized to the mean of the

peak frame (OEDN). By using all available variables, the

LDA classifier was able to analyze both overall tumor

behavior and localized behavior to provide the best discrimi-

nation with a Fisher discrimination criterion of 281.

The correlations of the top combination of five variables

from the entire dataset is plotted in Fig. 4. Three out of the

ten pairs of variables were highly correlated with each other,

including the mean of the peak width (PW_M), mean of the

full width at half maximum (FWHM_M), and mean of the

wash out time to 80% of peak (WOT80_M). This observa-

tion contradicts the normal expectation that linear discrimi-

nant analysis provides the best results when operating on

orthogonal variables. As suggested earlier, the incorporation

of highly correlated variables may be beneficial with CEUS

due to the inherent noisiness of ultrasound data at the pixel

level. By making a few similar but slightly different meas-

urements on the TIC, outliers found in one measurement

may be corrected by the other correlated measurements.

The three correlated variables were all time-based varia-

bles that measured the length of time each pixel maintained

enhancement. The means 6 standard deviations within be-

nign versus malignant cases were PW_M: 11.4 6 6.4 vs

6.0 6 4.2 s; FWHM_M: 69.6 6 34.4 vs 32.6 6 27.7 s; and

WOT80_M: 12.4 6 6.6 vs 6.7 6 5.1 s, respectively, indicat-

ing that benign lesions were enhanced longer and washed

out slower than malignant lesions in the rat ENU breast

tumor model. These observations were similar to those of

Rognin et al. where malignant focal liver lesions were found

to initially hyperenhance prior to becoming hypoenhanced in

the later portal-venous phase.27 However, Zhao et al. found

that contrast medium persisted in the late phase in malignant

human breast tumors and washed out in benign tumors.42

Although the animal model employed here was a breast tu-

mor model, the characteristic enhancement pattern did not

match that of its human counterpart. Since rat ENU-induced

breast tumors were models, it was not unexpected that their

physiologic and hemodynamic properties would differ from

human breast tumors. In order to develop this classification

system for clinical use, clinical patient data will be required

for training and cross-validation.

C. Methodological considerations

1. Multiple videos of the same tumor

Due to the small number of animals in this study (n¼ 10),

multiple videos of each tumor were analyzed to artificially

increase the size of the dataset (n¼ 19). Although this

improved our ability to train and test the classification sys-

tem, using multiple videos of the same tumors statistically

decreased variance within our dataset compared to analyzing

the same number of videos of independent tumors. Training

the classification system on multiple videos of the same

tumors probably also over-trains the classifier against the

FIG. 4. (Color online) Correlation of top combination of variables. This figure shows the correlations of the five variables that provided the best discrimination

of benign and malignant tumors according to the Fisher discriminant criterion. Out of the five variables, three pairs of variables were highly correlated with

each other, while the remaining seven pairs were predominantly uncorrelated. FWHM: full width at half maximum; PW: peak width; WOT80: wash-out time

to 80% of peak; OEDN: envelope curve difference normalized to the mean of the peak frame; _M: mean with the ROI; _S: standard deviation with the ROI.
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initial training set. This could potentially decrease the accu-

racy of the system when diagnosing videos of new tumors

previously unseen by the system. Due to these factors, it is

important to recognize that the results of 100% accuracy

seen above were almost certainly overestimating the true ac-

curacy of the analysis system. A larger scale study analyzing

unique tumors and administering a single type of contrast

agent will be conducted to more accurately determine the

sensitivity and selectivity of the system.

2. Data format

The data collected and analyzed in this study were videos

of ultrasound compressed with the Microsoft Video 1 LOSSY

compression codec. This format was not ideal for use in a

diagnostic system due to several nonlinear transformations

that degrade the integrity of the ultrasound signal, including

log-compression, color-palettization, and video compression.

Although analysis of the compressed video data was success-

ful for the general differentiation of benign and malignant

lesions, the loss of information may reduce the analysis sys-

tem’s ability to detect the more subtle differences; for exam-

ple, between different types of benign tumors. For a clinical

diagnostic system, the ideal scenario would be to access to

the data earlier in the video chain for analysis which may be

feasible if the diagnostic system is implemented directly on

the ultrasound scanner. If the diagnostic system is imple-

mented on a separate machine instead, it may not be feasible

to gain access to the raw data in a clinical setting, and in

such situations, a log-compressed video (e.g., DICOM format)

with lossless compression may suffice. Rognin et al. have

shown that log-compressed data is suitable for parametric

analysis under the appropriate imaging conditions, including

dynamic range and gain settings.40

3. Bolus injections

A second source for variance in the data was the bolus injec-

tion. Since the bolus injections were manually administered to

the animals, variations within the administration method could

have affected the microbubble concentration profile of the

bolus and; thus, the time-intensity curve. Although the injec-

tions were administered as consistently as possible in this study

to minimize this effect, variations in the time-intensity curves

were nevertheless introduced by the injections. This was best

exemplified by comparing videos 15 and 16: two videos of the

same tumor acquired approximately 30 min apart where the

only difference should have been the contrast agent (BR38 and

BR55, respectively). At peak enhancement, the tumor was

much more brightly and fully enhanced in video 16 than in

video 15 (Fig. 5). Despite the efforts to inject and image the

animals consistently, the poor enhancement in video 15 was

most likely due to an aberrant injection of microbubbles.

Many researchers avoid this difficulty with CEUS bolus

injections by administering contrast agents through a con-

stant infusion. By infusing the microbubbles at a constant

rate, complications due to fluctuations in the concentration

of the microbubbles can be avoided. Once the ultrasound sig-

nal intensity is stabilized, perfusion parameters can be meas-

ured with a few different techniques, the most common of

which being destruction-reperfusion. With the destruction-

reperfusion technique, high MI destruction pulses are trans-

mitted to destroy the microbubbles within the imaging plane

followed by low MI imaging to capture the rise in signal in-

tensity as microbubbles replenish the imaging plane.24,43

With other techniques, hemodynamic measurements can be

made by applying just enough ultrasound power to destroy a

fraction of the microbubbles with each imaging pulse and ei-

ther varying the pulsing interval25,44 or varying the power.45

In all three techniques, the resulting curves are fit to a mathe-

matical model to estimate kinetics. Although these techni-

ques avoid the difficulties associated with bolus injections,

tumor wash-in and wash-out characteristics cannot be

observed with these methods, and as other researchers have

shown, these characteristics can be powerful for tumor

differentiation.27,42,46

IV. SUMMARY AND CONCLUSIONS

In this study, the utility of measuring perfusion kinetics of

contrast-enhanced ultrasound on a pixel-by-pixel basis was

examined. Linear discriminant analysis was applied to classify

perfusion measurements from a rat tumor model as benign or

malignant. By using a combination of as few as two variables,

LDA was able to classify this dataset of 10 tumors and 19 vid-

eos with 100% accuracy according to the fivefold cross vali-

dation error method. By optimizing the Fisher discriminant

criterion, it was found that pixel-based measurements

achieved 5 times better separation of the two classes of tumors

than ROI-based measurements. It was also found that highly

correlated variables can improve the diagnostic accuracy of

LDA with CEUS possibly because the correlated variables

negate some of the noise inherent to CEUS.

The work presented in this article represents a pilot study

on developing a computer-aided diagnosis (CAD) system

based on perfusion kinetics measured from time-intensity

curves acquired from contrast-enhanced ultrasound videos.

Although a CAD system trained on an animal model cannot

be applied to classify human tumors, the techniques

described here are clinically translatable and can potentially

be applied to develop a system capable of differentiating

FIG. 5. Enhancement differences due to manual bolus injections. (a) Peak

enhancement frame from video 15 (rat 8, BR38). (b) Peak enhancement

frame from video 16 (rat 8, BR55). These two images were acquired approx-

imately 30 min apart following the same bolus injection and imaging proto-

col. In video 15, the significantly reduced enhancement was most likely due

to operator error during injection of microbubbles.
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solid tumor types in any organ imageable by CEUS, includ-

ing, but not limited to, breast, renal, hepatic, pancreatic, and

prostate tumors. Further, such a system could be sufficiently

sensitive to detect flow changes induced by therapeutic inter-

ventions. By training on tumors that achieved full, no, or

partial response, it could identify discrimination criteria to

assess tumor behavior over time. The process for research

and development of such a system would follow the same

steps as performed in this article: (1) identify a target organ

(e.g., liver); (2) establish a consistent and reliable imaging

protocol; (3) collect CEUS videos of the various tumor types

(e.g., focal nodular hyperplasia, hepatocellular adenoma, he-

patocellular carcinoma, etc.) from patients and verify their

histology; and (4) train and cross-validate the system on the

collected dataset. To make clinical diagnoses, new patients

should be imaged with the same protocol and the resulting

videos will be analyzed by the CAD system to provide auto-

mated diagnoses and their confidence ratings. As seen with

the results from the animal model, it is expected that this sys-

tem will again provide better separation among the various

tumor types than ROI-based methods and; thus, improve

clinical diagnostic accuracy.
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