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Background: The authors investigated thermal injury depth, inflammation, and scar-
ring in human abdominal skin by comparing the histology of incisions made with a
standard “cold” scalpel blade, conventional electrosurgery, and the PEAK PlasmaBlade,
a novel, low-thermal-injury electrosurgical instrument.
Methods: Approximately 6 and 3 weeks before abdominoplasty, full-thickness in-
cisions were created in the abdominal pannus skin of 20 women, using a scalpel
(scalpel), the PlasmaBlade, and a conventional electrosurgical instrument. Fresh
(0-week) incisions were made immediately before surgery. After abdominoplasty,
harvested incisions were analyzed for scar width, thermal injury depth, burst
strength, and inflammatory response.
Results: Acute thermal injury depth was reduced 74 percent in PlasmaBlade in-
cisions compared with conventional electrosurgical instrument (p � 0.001). Sig-
nificant differences in inflammatory response were observed at 3 weeks, with mean
CD3� response (T-lymphocytes) 40 percent (p � 0.01) and 21 percent (p � 0.12)
higher for the conventional electrosurgical instrument and PlasmaBlade, respec-
tively, compared with the scalpel. CD68� response (monocytes/macrophages) was
52 percent (p � 0.05) and 16 percent (p � 0.35) greater for a conventional
electrosurgical instrument and the PlasmaBlade, respectively. PlasmaBlade inci-
sions demonstrated 65 percent (p � 0.001) and 42 percent (p � 0.001) stronger
burst strength than a conventional electrosurgical instrument, with equivalence to
the scalpel at the 3- and 6-week time points, respectively. Scar width was equivalent
for the PlasmaBlade and the scalpel at both time points, and 25 percent (p � 0.01)
and 12 percent (p � 0.15) less than for electrosurgery, respectively.
Conclusions: PlasmaBlade incisions demonstrated reduced thermal injury depth,
inflammatory response, and scar width in healing skin compared with electrosur-
gery. These results suggest that the PlasmaBlade may provide clinically meaningful
advantages over conventional electrosurgery during human cutaneous wound
healing. (Plast. Reconstr. Surg. 128: 104, 2011.)
CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, II.
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The hemostatic control and dissection capabil-
ity of conventional electrosurgical devices1 is
fundamental to the practice of surgery. How-

ever, their underlying mechanism of action—ther-
mal ablation of tissue by delivery of continuous-
waveform radiofrequency energy to the tip of an
electrode “blade”2,3—is associated with thermal
damage to tissues, reduced surgical precision com-
pared with a scalpel, the potential for injury to
adjacent structures (e.g., bowel, nerves, blood ves-
sels), and delayed wound healing.4–12 Incremental
improvements in conventional electrosurgical de-
vice design have resulted in some reduction in
thermal injury,5–8,12 but these improvements have
been modest.

The PEAK PlasmaBlade is a novel electrosurgical
device that uses brief (approximately 40 �sec), high-
frequency pulses of radiofrequency energy to induce
the formation of electrical plasma along the edge of
a thin (approximately 12.5 �m), flat, 99.5 percent–
insulated electrode.13,14 With a burst rate less than 1
kHz, a typical duty cycle that does not exceed 5
percent, and a very small exposed electrode surface
area, the operating temperature of the PlasmaBlade
remains between 40°C and 100°C.14 This technology
has been shown to effectively dissect ophthalmologic
tissues as precisely as a scalpel with the hemostatic
control of conventional electrosurgery, even when
completely submerged in a liquid medium.

Prior work comparing the healing dynamics of
incisions made in porcine skin using scalpel, Plas-
maBlade, and electrosurgery demonstrated that
the PlasmaBlade reduced acute thermal injury
depth by 7- to 10-fold, decreased T-lymphocyte
(CD3�) and macrophage/monocyte (CD68�) in-
flammatory cell response, produced an approxi-
mately 2.6- to 2.78-fold increase in wound burst
strength after 6 weeks of healing, and ultimately
resulted in superior scar formation compared with
conventional electrosurgery.15 Additional work in
rats examining the healing dynamics of midline
fascial incisions created by these three instruments
demonstrated similar results.16 Although these re-
sults are scientifically interesting, the effect of dif-

ferent forms of electrosurgery on human wound
healing has not been investigated.

The present study used all three instruments
(scalpel, PlasmaBlade, and conventional electro-
surgery) to test the hypothesis that decreased ther-
mal injury would lead to improved cutaneous heal-
ing in humans following full-thickness skin
incision with primary closure. In addition to ob-
jective endpoints such as acute thermal injury
depth, healed incision burst strength, and surface
scar width, we evaluated wound inflammatory re-
sponse by quantifying T-lymphocyte (CD3�) and
macrophage (CD68�) cell density in excised sam-
ples from healing incisions.

PATIENTS AND METHODS
Subjects and Study Design

The protocol for this clinical study was ap-
proved by the Institutional Review Board of El
Camino Hospital (Mountain View, Calif.) and con-
ducted in accordance with all accepted standards
for human clinical research. All patients gave writ-
ten informed consent before study enrollment.
One-half of the cost of the abdominoplasty pro-
cedure was covered for patients participating in
the study.

This study was conducted as part of a random-
ized controlled trial of 20 adult female subjects
undergoing abdominoplasty with either the Plas-
maBlade or the standard of care (scalpel and con-
ventional electrosurgery).17 The study population
had a mean age of 42.7 � 10.1 years and a mean
body mass index of 24.6 � 3.4 kg/m2. Approxi-
mately 6 and 3 weeks before abdominoplasty, each
subject underwent placement and primary closure
of three full-thickness skin incisions, made with
the three instruments of interest (scalpel, Plas-
maBlade, and a conventional electrosurgical in-
strument) and located within the area planned
for eventual excision (Fig. 1). An additional set
was made immediately before abdominoplasty
with the patient under general anesthesia. After
harvest of the abdominoplasty tissue mass, heal-
ing incisions were submitted for burst strength
testing and manual and computer-assisted his-
tologic analysis.

Incisional Wound Model Surgical Procedure
Three separate sets of comparison incisions

were placed within the subject’s planned abdomi-
noplasty area as shown in Figure 1. Incisions were
created in advance of abdominoplasty (6-week and
3-week time points) and immediately before ab-
dominoplasty (designated the 0-week, or acute
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time point). Each incision was considered to be an
independent data point.

The incision area was shaved, prepared with
ChloraPrep (2% chlorhexidine gluconate/70%
isopropyl alcohol solution; CareFusion, Inc., San
Diego, Calif.), and draped in the usual sterile fash-
ion. The location for each incision was measured
and labeled, and local anesthesia was induced by
means of subcutaneous injection of approximately
5 ml of 1% lidocaine without epinephrine (VWR,
West Chester, Pa.). Each incision was 5 cm in
length and made through the full thickness of the
skin in a single stroke, with repetitive strokes made
only to ensure a full-thickness wound. Incisions
were made in parallel orientation and separated
from each other and the abdominoplasty border
by a minimum of 2.5 cm in all directions. Incisions
were made with a no. 10 scalpel blade (Bard-
Parker, Franklin Lakes, N.J.), the PlasmaBlade 4.0
using the PULSAR Generator (PEAK Surgical,
Inc., Palo Alto, Calif.) on Cut setting 3 (6 W), and
the Valleylab Electrosurgical Pencil (model
E2516) with a standard stainless-steel blade elec-
trode (model E1551X) using a Force 2 Generator
(Valleylab, Boulder, Colo.) on Cut mode (30 W).
Settings for the PlasmaBlade and conventional
electrosurgical instruments were chosen based on
widely accepted settings for routine use. The ap-
proximate cost of the PlasmaBlade device was
$300, the cost of the Valleylab pencil was $43, and
the cost of the scalpel blade was $0.28.

Each incision was closed with 5-0 nylon suture
(Johnson & Johnson/Ethicon, Inc., Somerville,
N.J.) in running fashion, and covered with baci-
tracin-neomycin-polymyxin ointment (Johnson &
Johnson) and sterile gauze. Sutures were removed
after approximately 7 days and incisions moni-
tored for healing.

Histologic Preparation and Thermal Injury
Examination

After harvest of the abdominoplasty sample, the
excess underlying adipose tissue was dissected away
and 8 � 2-cm samples containing the healing inci-
sion for each instrument (scalpel, PlasmaBlade, and
electrosurgery) and time point (0, 3, and 6 weeks)
were labeled and excised (Fig. 2). Each healing in-
cision sample was subsequently sharply divided in
half. One-half was immediately placed in sterile 0.9%
sodium chloride solution (VWR) and submitted for
burst-strength testing in a fresh state (described be-
low). The remaining half was immersed in 10% neu-
tral buffered formalin (VWR) for a minimum of 24
hours and then embedded in paraffin for histologic
analysis. Representative 4-�m sections were stained
with hematoxylin and eosin, Masson’s trichrome
stain, and human immunohistochemistry stain for
T-lymphocytes (CD3 M7254; Dako, Carpinteria,
Calif.) and macrophages (CD68 NCL-L-CD68; No-
vacostra, Newcastle, United Kingdom). All slides
were coded and the 0-week time point slides were
evaluated by light microscopy (BX 40 microscope,
with a DP70 charge-coupled device camera; Olym-
pus, Center Valley, Pa.) for acute thermal injury
depth by a single pathologist (E.J.H.) blinded to the
wounding modality. The zone of coagulation necro-
sis resulting from thermal injury was determined in
microns by direct microscopic measurement using
the hematoxylin and eosin–stained sections. Slides
from all time points were then scanned for digital
immunohistochemical analysis (described below).

Digital Immunohistochemical Analysis
Computational analysis of CD3� T-lymphocyte

and CD68� macrophage/monocyte density was
performed using a previously described image-
analysis software package18 adapted by the authors

Fig. 1. Arrangement of incisions in the abdominoplasty area, by instrument and time
point, just before the harvesting procedure. SC, scalpel; PB, PlasmaBlade; ES, electro-
surgery.
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to the current study. (See Document, Supplemen-
tal Digital Content 1, which shows a complete de-
scription of this method, http://links.lww.com/
PRS/A331; and Figure, Supplemental Digital
Content 2, which shows the tissue collection meth-
odology and analysis hierarchy described in Sup-
plemental Digital Content 1, http://links.lww.com/
PRS/A332.) Briefly, 632 slides of stained tissue
sections from all study subjects were scanned
(Fig. 3) on a ScanScope XT slide scanner (Aperio
Technologies, Inc., Vista, Calif.) at 20� magnifi-
cation and processed in 2 � 2-mm increments.
After segmentation and colorimetric threshold-

ing, noise correction, filtering, and manual veri-
fication, a total of 605 slides were included in the
subsequent statistical analysis.

Wound Burst Strength
The burst strength of freshly excised healing

wound samples immersed in normal saline was
measured in pounds-force per inch according to
previously reported methods,15 using a Chatillon
TCD200 digital force tester (Ametek TCI Division,
Largo, Fla.). Briefly, each incision sample was di-
vided into three equally sized test units, each with

Fig. 2. Tissue dissection and preparation for burst-strength testing and histologic analysis. Each healing incision sam-
ple was sharply divided in half. One-half was immediately placed in sterile 0.9% sodium chloride solution and submitted
for burst-strength testing in a fresh state. The remaining half was immersed in 10% neutral buffered formalin for a
minimum of 24 hours and embedded in paraffin for histologic analysis.

Fig. 3. (Left) Typical 2 � 2-mm processing tile from a 3-week scalpel incision,
stained for CD3. (Inset) CD3� cluster is enlarged on the right. (Above, right) CD3�

cluster seen at 20�magnification. (Below, right) Automated segmentation outlines
of positively stained tissue.
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the healing incision centered in the sample. The
maximum width of each test unit at the location of
the healing incision was then measured three times
using digital calipers (Absolute 500 Digimatic Cali-
pers; Mitutoyo America Corporation, Aurora, Ill.)
and averaged. Each test unit was then secured in the
jaws of the clamp, with the healing incision centered
between 1 cm of tissue above and below the clamp
jaws. Bursting strength of each incision was then
determined by slow, progressive stressing of the seg-
ment to disruption at a speed of 2 inches/minute.
The peak force was then recorded and converted to
pounds-force per inch.

Surface Scar Width
The width of the surface scars for the 6-week

time point incisions were recorded at 3 and 6
weeks after placement; the 3-week incisions were
recorded on the day of abdominoplasty. Measure-
ments were obtained, in millimeters, by one au-
thor (H.L.R.) using a calibrated ruler (Standard
Ruler F04609; Office Depot, Inc., Delray Beach,
Fla.) from one edge of the scar to the other at
three distinct points: scar center, 2 cm above the
center point, and 2 cm below the center point.
Measurements for each incision were averaged
and recorded by age (in days) since incision for
comparison.

Statistical Analysis
Statistical analysis was performed using the R

statistical environment software program, version
2.11.0.19 All endpoints are reported as mean (SD),
except where indicated. A general linear model
was constructed with main effects of instrument
and time point to evaluate differences between
study endpoints; summaries of the least squared
means differences between overall healing scores
were evaluated with this model. Linear regression
was also performed to evaluate each endpoint over

the 6-week assessment period. Statistical signifi-
cance was defined as p � 0.05.

RESULTS
Mean (SD) operative time was 1 hour 38 min-

utes 40 seconds (13 minutes 9 seconds) for pa-
tients in the PlasmaBlade abdominoplasty group
and 1 hour 35 minutes 48 seconds (9 minutes 9
seconds) for patients in the standard-of-care ab-
dominoplasty group (p � 0.47). The clinical
course of healing and time to drain removal was
comparable between the two groups.

Skin scar width, acute thermal injury depth, and
wound burst strength are summarized in Table 1.
When compared with conventional electrosurgery,
incisions made with the PlasmaBlade reduced ther-
mal injury depth by 74 percent (p � 0.001). At the
3- and 6-week time points, PlasmaBlade incisions
demonstrated equivalent burst strength compared
with scalpel and an improvement of 65 percent (p �
0.001) and 42 percent (p � 0.001), respectively, over
conventional electrosurgery incisions. PlasmaBlade
skin incision scar width was equivalent to scalpel at
the 3- and 6-week time points, with a 25 percent (p �
0.01) and 12 percent (p � 0.15) reduction in scar
width, respectively, compared with conventional
electrosurgery.

CD3� and CD68� responses by time point and
instrument are shown in Figures 4 and 5, and
mean responses are summarized in Table 2. The
week-0 samples served as an internal control;
because there were no significant differences be-
tween the measured densities of CD3� and CD68�

cells in week-0 samples from the three instru-
ments, the data were judged to be reliable. After
3 weeks of healing, CD3� and CD68� inflamma-
tory response in PlasmaBlade incisions was 21 per-
cent (p � 0.12) and 16 percent (p � 0.35) greater
compared with scalpel incisions, respectively; how-
ever, these differences were not statistically signif-
icant. Conventional electrosurgery incisions dem-

Table 1. Comparison of Scar Width, Thermal Injury Zone, and Burst Strength Measurements in Human Skin
Incisions Made with the PlasmaBlade, Electrosurgery, and Scalpel

PlasmaBlade
Mean (SD)

Electrosurgery Scalpel

Mean (SD) %* p Mean (SD) %* p

Acute thermal injury depth, �m 195 (127) 763 (208) 74† �0.001 — — —
Overall scar width, mm

3 wk 2.0 (0.6) 2.5 (0.8) 25 0.01 1.8 (0.7) 10 0.23
6 wk 2.5 (0.7) 2.8 (0.5) 12 0.15 2.5 (0.9) 0 0.85

Wound burst strength, lb-f/in
3 wk 43.44 (26.65) 26.28 (14.42) 65† �0.001 43.14 (24.39) 1 0.95
6 wk 59.32 (37.53) 41.78 (21.71) 42† �0.001 51.99 (30.38) 12 0.25

*Percentage differences and corresponding p values are calculated relative to the PlasmaBlade unless otherwise noted.
†Percentage difference calculated relative to electrosurgery.
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onstrated a 40 percent (p � 0.01) and 52 percent
(p � 0.05) increase, respectively. There were no
significant differences between values at the
6-week time point (Figs. 4 and 5).

DISCUSSION
The healing dynamics of surgical incisions

made with various electrosurgical instruments

have been explored in many animal models. How-
ever, a comparison of the healing dynamics of
human cutaneous incisions made with conven-
tional electrosurgical instruments versus lower
thermal injury instruments, such as the Plasma-
Blade, have not yet been described in the litera-
ture. To investigate this issue, a novel, in vivo,

Fig. 4. Box plot of CD3� cell density by instrument and time point. The black bars
denote median response, whereas boxes indicate interquartile range. The CD3�

responses at week 0 are similar as expected, whereas at week 3, median CD3�

response was 40 percent higher in the electrosurgery incisions than in PlasmaBlade
or scalpel incisions (p � 0.02).

Fig. 5. Box plot of CD68� cell density by instrument and time point. The largest
differences were observed during week 3, with electrosurgery incisions exhibiting
a 52 percent increase in CD68� cell density response compared with PlasmaBlade
and scalpel incisions (p � 0.01).
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human cutaneous wound-healing model that takes
advantage of the planned removal and disposal of a
large area of human skin during abdominoplasty was
developed. By recruiting patients who have elected
to undergo this procedure, the healing of incisions
over a time frame that closely matches the clinical
course of healing following a surgical procedure
could be monitored and quantified, ensuring that
patients were not subject to long-term residual scar-
ring left by the experimental procedure.

In agreement with previous work in porcine
skin15 and rat fascia16 models, it was found that use
of a conventional electrosurgical instrument pro-
duced a wider scar, a deeper zone of thermal
injury, and weaker healed incision strength when
compared with scalpel and the PlasmaBlade (Ta-
ble 1). The correlation between thermal injury
depth, scarring, and the inflammatory process as-
sociated with healing was also investigated. Al-
though inflammation marks a well-documented
phase of wound healing,20 recent studies have sug-
gested that postinjury inflammation is not neces-
sarily an essential component of tissue repair, and
that it may delay wound healing and worsen
scarring.21 It has been suggested that faster reso-
lution of the inflammatory phase might lead to
more rapid healing and less scarring. To further
investigate the correlation among healing wound
strength, scarring, and healing-associated inflam-
mation, an in-depth quantification of CD3� T cells
and CD68� macrophages was performed with
our histologic samples. These two cell types are
central to the inflammatory phase of healing
and, in this study, serve as a surrogate measure
of inflammation.22–26

For the quantification of cell density, a previ-
ously developed18 color-based (YUV thresholding)
computational method was adapted for this appli-
cation. This method was used because YUV trans-
formation provides a computationally simple method
for separating color information (chrominance) from

imageintensity(luminance).This focusoncolorallows
for increased specificity and improved identification of
cells with positive staining.

Cell densities were similar for the 0-week time
point, as was expected with incisions that had been
freshly harvested and analyzed, with no time for
cell recruitment or initiation of the inflammatory
phase. This time point served as a convenient in-
ternal control with which to validate the slide anal-
ysis method. The largest and most significant dif-
ferences in instrument-dependent response were
observed at 3 weeks, with inflammatory cell counts
much higher in the conventional electrosurgery
samples than in those created with the Plasma-
Blade or scalpel (Figs. 4 and 5 and Table 1). Given
the deeper thermal injury zone observed in the
conventional electrosurgery incisions, the in-
creased inflammatory response is likely attribut-
able to phagocytotic removal of debris and ne-
crotic tissue.

In contrast, by 6 weeks, when wounds would be
expected to have progressed to the remodeling/
proliferative phase, inflammatory cell density had
equalized among the three instrument types. Con-
sidered together with the other data presented
here, it is likely that the lower degree of inflam-
mation at 3 weeks in the scalpel and PlasmaBlade
groups is directly related to the observed improve-
ment in scarring and wound burst strength at the
end of the study.

CONCLUSIONS
These findings are consistent with the Plasma-

Blade’s favorable effects on human skin (i.e., im-
provement in healed scar width and strength, and
reduction in thermal injury depth) and are similar
to those seen in animal models and human ocular
applications. Furthermore, this study begins to clar-
ify the correlation between these observations and
the reduced inflammatory response induced by
the PlasmaBlade during incision. The results

Table 2. Density of CD3� and CD68� Cells in Sectioned, Immunostained, Human Skin Incisions Made with the
PlasmaBlade, Electrosurgery, and Scalpel*

CD3� CD68�

Time SC PB ES p† LSM SC PB ES p† LSM

0 weeks 138 93 120 0.33 9265 87 71 75 0.67 1355.9
3 weeks 171 207 239 0.02 42,928 173 201 263 0.01 77,827
6 weeks 196 216 223 0.71 7702.3 202 232 185 0.48 21,385
SC, scalpel; PB, PlasmaBlade; ES, electrosurgery; LSM, least-squared mean (the best unbiased linear estimate of the mean value at this time
point).
*Mean cell density is expressed in cells per square millimeter.
†One-way analysis of variance p values calculated across different blades by time point.
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suggest that the PlasmaBlade provides useful
advantages over conventional electrosurgery
during human wound healing.
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