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itives). This is comparable to the best reported results from 
manual examination of intraoperative imprint cytology 
slides while reducing the need for direct input from a cyto-
pathologist.  Conclusion:  This work demonstrates a proof of 
concept for developing a highly accurate and automated 
system for the intraoperative evaluation of margin status to 
guide surgical decisions and lower positive margin rates. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Breast conservation therapy (BCT) or partial mastec-
tomy has been proven to have equal survival efficacy 
compared to full mastectomy through multiple studies 
with more than 10 years of follow-up and is currently 
considered the standard of care  [1–4] . Despite advances 
in preoperative imaging and tumor localization through 
ultrasound and MRI, positive margin rates in BCT con-
tinue to range from 25 to 50%; positive margins have neg-
ative consequences for patients, surgeons, and the health-
care system, requiring additional treatments to ensure 
disease-free outcomes  [5, 6] . Several studies have em-
ployed the use of intraoperative frozen section analysis to 
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 Abstract 
  Objective:  To develop an intraoperative method for margin 
status evaluation during breast conservation therapy (BCT) 
using an automated analysis of imprint cytology specimens. 
 Study Design:  Imprint cytology samples were prospectively 
taken from 47 patients undergoing either BCT or breast re-
duction surgery. Touch preparations from BCT patients were 
taken on cut sections through the tumor to generate posi-
tive margin controls. For breast reduction patients, slide im-
prints were taken at cuts through the center of excised tis-
sue. Analysis results from the presented technique were 
compared against standard pathologic diagnosis. Slides 
were stained with cytokeratin and Hoechst, imaged with an 
automated fluorescent microscope, and analyzed with a fast 
algorithm to automate discrimination between epithelial 
cells and noncellular debris.  Results:  The accuracy of the au-
tomated analysis was 95% for identifying invasive cancers 
compared against final pathologic diagnosis. The overall 
sensitivity was 87% while specificity was 100% (no false pos-

 Received: September 13, 2010 
 Accepted: December 27, 2010 
 Published online: April 27, 2011   

 Correspondence to: Prof. Jessica Wang-Rodriguez 
 Department of Pathology and Laboratory Medicine Services
VA San Diego Healthcare System, University of California 
 3350 La Jolla Village Dr. (113),   San Diego, CA 92161 (USA) 
 Tel. +1 858 642 3511, E-Mail jwrodriguez   @   ucsd.edu 

 © 2011 S. Karger AG, Basel 

 Accessible online at:
www.karger.com/acy 

http://dx.doi.org/10.1159%2F000324029


 Martin et al. Acta Cytologica 2011;55:271–280 272

evaluate the need to excise additional tissue during sur-
gery  [7] . However, frozen section analysis is a difficult, 
time-consuming, and tissue-destructive procedure that 
can be impractical for the evaluation of an entire lumpec-
tomy surface. Imprint cytology has been shown to have 
equal accuracy in detecting positive margins compared 
to frozen section analysis while completely preserving 
tissue for traditional permanent section analysis  [8, 9] . 
Intraoperative imprint cytology has been successfully 
used by skilled cytopathologists in large scale clinical 
studies to reduce positive margin rates  [10–12] . However, 
screening by the cytopathologist can be time consuming 
and could prolong the surgical procedure. A previous re-
lated study by Cortes-Mateos et al.  [13]  used a semiauto-
mated software-based image analysis of epithelial cell 
density across an entire slide to validate that the number 
of epithelial cells sampled by imprint cytology is a good 
metric for positive margins. The present study describes 
the first use of a fast, completely automated analysis tech-
nique including automated debris filtering and autofo-
cusing (in contrast with the previous study) so that no 
immediate input is needed by a cytopathologist. Further-
more, in the present study, analysis of permanent sections 
of tissue local to the region sampled by imprint cytology 
significantly improved the measures of accuracy and the 
ability to validate the current technique. 

  Background 

 Digital pathology and computer-aided diagnosis 
(CAD) are rapidly growing fields in the medical industry. 
Several competing companies and research laboratories 
are developing technology and software application 
suites that allow researchers and pathologists to analyze, 
quantify, and diagnose digital image data collected from 
the numerous imaging modalities, including bright-field 
and fluorescence microscopy, MRI, ultrasound, and CT, 
among others. Most applications utilizing optical mi-
croscopy attempt to perform more accurate measure-
ments of cellular features that pathologists typically em-
ploy in making a diagnosis. CAD combines multiple 
quantitative measurements taken from each individual 
cell and subsequently employs pattern recognition or ma-
chine learning algorithms to classify or grade cells. While 
mimicking standard pathological analyses, CAD can ex-
ceed human performance in quantitative measurements 
such as DNA content or the size of organelles within each 
cell  [14–17] . The majority of CAD tools are powered by 
supervised classification algorithms which self-adapt to 

recognize the different classifications of tissue expected 
within a set of images. These algorithms are first supplied 
with a training set wherein each cell has been preclassi-
fied by a pathologist. Subsequently, algorithm perfor-
mance is evaluated on an independent test set of images 
without any preclassified cells. Problems can arise from 
imaging or sample preparation artifacts that preclude au-
tomated analysis from measuring suitable differences be-
tween different classes of cells under investigation. With 
careful evaluation and interaction with experienced pa-
thologists, these techniques are often quite successful 
 [18–23] .

  However, practical use of supervised classification al-
gorithms can be limited by the computational processing 
required to classify a large data set with a selected algo-
rithm  [24] . For most tissue section preparations, a bright-
field stain such as hematoxylin and eosin (H&E) is used 
by pathologists to evaluate tissue architecture and cellu-
lar grade to make determinations of disease progression. 
Selecting the proper measurements to distinguish tissue 
grades and validating the training set for the problem at 
hand can require considerable skill and experience  [25] . 
By comparison, performing a fast intraoperative margin 
status evaluation of a cancerous tumor requires a simple 
‘yes-or-no’ classification; the exact stage of disease pro-
gression is less important than knowing if disease is pres-
ent or absent at the surgical margin. As far as we know, 
there are no reports of CAD for intraoperative analysis of 
breast cancer surgical margins. For imprint cytology of 
breast surgical margins, CAD of individual cells is chal-
lenging since most of the cancer cells are present in 3-di-
mensional clusters with unclear boundaries between 
neighboring and overlapping cells. 

  In the present study of breast cancer surgical margins, 
the classes for this technique were reduced simply to can-
cer and noncancer. In addition, fluorescent imaging and 
stains were used since highly specific antibody-antigen 
binding accomplishes the majority of the task of identify-
ing the desired cells in a sample and can detect the cancer 
cells present in 3-dimensional clusters. Nevertheless, im-
munofluorescent staining is not perfect and nonspecific 
binding, environmental debris, and sample preparation 
can all introduce fluorescent artifacts that would be rec-
ognized as cells in any algorithm using only an intensity 
threshold to classify recognized objects on a slide. For 
these reasons, a fast algorithm was developed based on 
simple statistical, correlational, and morphological pa-
rameters to distinguish true epithelial cells from other 
fluorescently labeled debris located on imprint cytology 
specimens.
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  Methods 

 Surgical Samples  
 Institutional Review Board approval from the University of 

California, San Diego, was obtained to study breast cancer and 
noncancer tissue from patients. All patients underwent their 
planned procedure for breast surgical treatment, and the speci-
mens were removed and sent to the pathology laboratory for anal-
ysis. As controls, noncancer samples were acquired from 2 groups 
of patients: normal tissue was collected from patients undergoing 
breast reduction surgery, and prophylactic tissue was obtained 
from patients undergoing prophylactic mastectomy of a noncan-
cerous breast. All surgeries were performed at the University of 
California San Diego Medical Center. Standard techniques for re-
section of breast tissue were employed including electric cauter-
ization (Valley Labs, Boulder, Colo., USA). Fresh specimens were 
gently imprinted onto poly-L-lysine (PLL)-coated glass slides 
(Newcomer Supply, Middleton, Wisc., USA). 

  Touch Preparation for Breast Epithelial Cells  
 After excision, surgical specimens were grossed by a patholo-

gist. The area with the highest probability of containing tumor 
cells was located by palpation or by an image-guided wire that was 
placed preoperatively. A cut through the tumor was made at this 
location to generate a ‘calibrated’ positive margin with an area 
with a high probability of containing tumor cells. As explained 
below, permanent or frozen section pathology was performed on 
suspicious tissue so to verify that cancer cells were present in the 
‘calibrated’ positive margin. For larger tumors, tissue was flash 
frozen for later analysis and for smaller tumors, the area was spe-
cially inked for later identification. These calibrated margins rep-
resent the worst possible outcome: a slice directly through the 
tumor with no margin of healthy tissue. PLL-coated slides were 
touched on both halves of the exposed tissue in the cross-section-
al cut in a process known as imprint cytology or touch prep. For 
the permanent section analysis of this same region of tissue, a pla-
nar sample of the tissue was sectioned from the tumor surface 
either for paraffin embedding in a cassette (for T1 tumors, 2 cm 
or less) or for frozen sectional analysis in a frozen tissue block (for 
T2 and T3 tumors, greater than 2 cm). In most cases, 4 imprint 
cytology slides were available for automated analysis. Two slides 
were taken directly from the tumor surface, and the retained tis-
sue sample was sandwiched between 2 additional slides ( fig. 1 ). 
For some small tumors, only 3 imprint cytology slides were taken 
due to the small amount of tumor available for study. 

  To ensure that the automated analysis and the standard path-
ological analysis were compared on the same location in the sur-
gical specimen in all cases, localized pathological analysis was 
performed by a board-certified pathologist (J.W.R.) to confirm 
the presence or absence of cancer from the imprint cytology loca-
tion. Several 5-micron-thick microtome sections (up to 12) were 
made through the tissue sample; to insure the most conservative 
data analysis, if the pathologist found cancer in any of the sections 
the entire tissue sample was declared positive. This local pathol-
ogy was not performed in the previous study by Cortes-Mateos et 
al.  [13] ; therefore, the sensitivity was most likely underestimated. 

  Immunofluorescence Staining and Automated Microscopy  
 The immunofluorescent staining protocol was previously re-

ported in detail and validated by Cortes-Mateos et al.  [13] . 

Hoechst, a DNA stain, was used as a nuclei marker; cytokeratin 
was used as an epithelial cell marker. The complete staining pro-
tocol, which included fixation, permeabilization, and blocking, 
required 20–25 min. Others have found that immunofluores-
cence staining protocols can be reduced to only 10 min by de-
creasing the fixation time, skipping the blocking step, and de-
creasing the incubation time while maintaining image quality 
 [26] . An automated scanning stage microscope was used for data 
acquisition (AxioImager Z1; Carl Zeiss, Inc., Thornwood, N.Y., 
USA). Automated control of the microscope was handled by a cus-
tom software application. The entire surface of each imprint cy-
tology slide was imaged at a magnification of 5 !  using a 1.4-mega-
pixel camera (Cool-SNAP HQ2; Photometrics, Pleasanton, Calif., 
USA); the imaging resolution was 1.267  � m/pixel. Two fluores-
cent images (1 for Hoechst fluorescence and 1 for cytokeratin flu-
orescence) were recorded at each image tile, and software autofo-
cusing was employed to select the imaging plane  [27, 28] . 

  Image Processing 
 Hoechst and cytokeratin images were employed to count the 

number of epithelial cells even when large clusters of epithelial 
cells were present. If all of the epithelial cells were single isolated 
cells, it would be easy to distinguish the epithelial cells from cy-
tological debris (fragments of fat, necrosis, fibrin, and fragmented 
cytoplasmic material) based on the characteristic size and shape 
of epithelial cells. However, the epithelial cells from cancer cases 
are usually captured in large clusters. Therefore, in order for the 
cell counting to be effective, clusters of epithelial cells must be 
distinguished from cytological debris also present on the slide. 
The method of recognizing epithelial cells began with generating 
outlines for all fluorescing objects in a given cytokeratin image. 
The computed cytokeratin outlines were mapped to their corre-
sponding Hoechst fluorescence image to obtain additional mea-
surements ( fig. 2 ). To screen true epithelial cell outlines from out-
lines of cytological debris, a simple intensity cutoff for Hoechst 

  Fig. 1.  Cross-sectional slice at the suspected tumor location. 
Touch preps were taken from both sides of the cut, and a small 
tissue section from the tumor (red) was excised and saved in a cas-
sette for further analysis (box). One or 2 touch preps were taken 
on the excised segment depending on the size of the tissue re-
moved.  
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fluorescence was employed. Additional metrics were computed 
from the Hoechst fluorescence values and used to identify noncel-
lular debris as explained in the debris filtering section. 

  The outlining process for cytokeratin images was as follows: 
the image was background subtracted to eliminate any intensity 
offsets. Subsequently, the image was converted into a binary im-
age using Renyi’s entropy thresholding which was selected for its 
robustness in determining proper threshold values across a vari-
ety of images  [29] . Median filtering was applied to the binary im-
age to remove any single pixel noise  [30, 31] . Two binary morpho-
logical operators were applied to the image in order to connect 
disjoint sets of pixels: a binary closure and a binary opening  [32] . 
Finally, a connected component algorithm, wherein adjacent 
white pixels were grouped together to create a set of boundary 
pixels, was applied to obtain outlines of objects in the binary im-
age  [33] . The pixel coordinates of each outline were mapped back 
to the original image for the calculation of cellularity metrics to 
distinguish epithelial cells and cell clusters from debris. 

  Debris Filtering  
 Fibers, dust, cellular fragments, and nonspecific staining, here-

after collectively referred to as ‘debris’, can all fluoresce as bright-
ly as stained cells in fluorescence imaging; consequently the debris 
will also be outlined by the above mentioned steps and cannot be 
distinguished from true epithelial cells by a simple intensity cutoff. 
In the previous study by Cortes-Mateos et al.  [13] , this issue was 
overcome by manually removing image tiles with significant de-
bris from the image set prior to analysis. For the current study, a 
method of automatic rejection of noncellular outlines based on 
quantitative metrics was developed. After the initial outlining pro-
cess had been performed on an image, candidate outlines were 
screened on an individual basis by 4 different debris filters based 
on properties of the fluorescence intensity distribution:
  (1) Hoechst and cytokeratin each exclusively stain different re-

gions of the cell, i.e. the nucleus and the cytoplasm, respec-
tively. Therefore, the features of an epithelial cell or cell cluster 
appear significantly different in each channel. In contrast, fi-

bers, dust, and some nonspecific staining in a fluorescence 
image tend to look highly similar in both the Hoechst and cy-
tokeratin channels. If the coefficient of variance of the cyto-
keratin and Hoechst fluorescence of an outline were within 5% 
of each other, the outline was rejected ( fig. 3 a, b).  

 (2) An additional filter was employed to take advantage of the ach-
romaticity of fiber and dust. If the correlation coefficient of the 
cytokeratin and Hoechst fluorescence was 0.75 or greater, the 
outline was rejected; an example is shown in  figure 3 c, d.  

 (3) Another filter was established which eliminates outlines of de-
bris with a lack of features in either channel. For example, non-
specific staining can sometimes be seen as large pools of dye 
in a fluorescence image with a relatively flat intensity distribu-
tion. If the cytokeratin or the Hoechst percent standard devia-
tion was 25% or less, the outline was rejected; an example is 
shown in  figure 3 e, f.  

 (4) Air bubbles created during the immunofluorescent staining 
process have a tendency to collect unbound stain at their bor-
ders, causing their edges to fluoresce brightly during imaging 
( fig. 3 a; bottom left). Outlines of these bubble edges sometimes 
included a number of epithelial cells, allowing them to pass the 
above mentioned filters ( fig. 3 g, h). However, the characteristic 
long and narrow shape of these outlines can be detected by 
measuring its circularity. Circularity is the ratio of the area of 
a shape to the area of a circle with the same perimeter; long, 
narrow shapes have low circularity. Outlines of this type of 
debris were screened out by rejecting all outlines with a circu-
larity value less than 0.2.  
 Using an independent test set of slides, cutoff values for the 

filters were determined by manually measuring the properties of 
a large number of debris outlines and choosing values to screen 
out the large majority of debris while minimizing the removal of 
valid cellular outlines. Identical cutoff values were employed for 
all slides that were studied. With a larger patient study, establish-
ing a classified training set with machine learning algorithms or 
neural networks would further optimize the effectiveness of these 
debris filters. 

a b c

  Fig. 2.  Cellular outlining from cytokeratin. A large epithelial cell 
cluster is surrounded by several smaller clusters and individual 
cells. The image of raw cytokeratin fluorescence, from positively 
stained epithelial cells ( a ), is used as an input for the software out-

lining algorithm. Outline results are drawn in pink around rec-
ognized cells and clusters and are subsequently measured for size 
and location ( b ). The Hoechst fluorescent image is used to aid in 
discriminating real cells from debris ( c ).  
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  Epithelial Cell Density 
 The epithelial cells from positive margins often appeared on 

the imprint cytology slides in dense clusters. Multilayer cell clus-
ters and cell overlap make it difficult to obtain outlines of indi-
vidual epithelial cells within a dense cluster. This overlapping of 
cells was not a critical issue in this study since the presence of a 
large cluster of epithelial cells was a very strong indicator of the 
presence of cancer in the margin. The number of epithelial cells 
in the epithelial cell cluster was calculated by dividing the area of 
an outline of the entire cytokeratin-positive cluster by 200  � m 2 , 
the estimated average area of a single epithelial cell. This method 
assumes that all clusters occupy a 2-dimensional plane, thereby 
undercounting the number of epithelial cells in multilayered clus-
ters. Since the same estimated epithelial cell area was used for all 
cases, the actual value used was irrelevant when comparing cel-
lular density. Cellular density for a slide was determined by divid-
ing the total number of epithelial cells by the scanned area of the 
slide. For all surgical cases, the slide with the highest determined 
density is reported. 

  Results 

 Debris Filtering 
 Automated debris filtering was qualified on an inde-

pendent test set of patient slides from a previous study 
where manual removal of debris had been employed. The 
test set consisted of slide images from 24 cancer patients 

and 10 noncancer patients, 34 in total  [13] . The image-
processing algorithm described above was employed to 
identify potential cells and cell clusters. The manual aver-
age epithelial cell density for a given slide was calculated 
after visually inspecting and manually removing images 
containing debris outlines from the density calculation. 
The automated average epithelial cell density was calcu-
lated by establishing cutoff values for the filtering met-
rics. After optimization of debris filter cutoff values, 
strong correlation between manual and automated fil-
tered epithelial cell density was achieved over 4 orders of 
magnitude in the test set of slides. The optimized cutoff 
values were used for debris filtering with the patient slides 
discussed in this paper ( fig. 4 ). The correlation coefficient 
between the manual and automated filtering was 0.93 
over 4 orders of magnitude in cell density, and the slope 
of the regression line was near unity. This suggests that 
the cellular counts with automated debris filtering are 
nearly equivalent to those of the manually filtered image 
set. A regression line with a slope greater than or less than 
unity would indicate overfiltering or underfiltering, re-
spectively. The few outliers that deviate from the regres-
sion line are sampled across different diagnoses, signify-
ing that automated debris filtering is equally effective 
across all types of cases. Additionally, automated filtering 

100 μm100 μm200 μm 50 μm
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  Fig. 3.  Examples of noncellular debris screened by filters ( a ,  c ,  e ,  
g : Hoechst images;  b ,  d ,  f ,  h : cytokeratin images).  a ,  b  Large area 
of nonspecific staining containing nuclei. Standard deviation re-
fers to the staining intensity of Hoechst and cytokeratin within 
an outline. The cytokeratin standard deviation is 26.18%, and the 
Hoechst standard deviation is 26.35%. This feature is classified as 
debris since the standard deviations of the 2 channels are within 
5%.  c ,  d  Piece of dust fluorescing similarly in both channels. With 

a cytokeratin and Hoechst correlation coefficient of 0.896, the 
piece of dust is determined to be noncellular.  e ,  f  Fiber with high-
ly uniform fluorescence. The Hoechst standard deviation is 
10.36%, exhibiting hardly any variability across the feature. 
 g ,  h  Cells near the edge of a large air bubble generate an outline 
with a large amount of empty space. A circularity of 0.06 indicates 
that the outline is erroneous.  
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removes individual outlines of debris within an image 
rather than removing an entire image from the data set 
as was done during manual filtering. This should im-
prove the accuracy of cellular detection, particularly for 
slides with a low cellular density. 

  The cellular densities of slides were compared before 
and after debris filtering. As shown in  figure 5  for pro-
phylactic and normal cases, debris filtering reduced the 
apparent cell density by up to a factor of 25. Several of the 
imprint cytology slides from normal and prophylactic 
patients contained large amounts of debris; if no debris 
filtering were employed, these slides would appear to 
have as high a cellular density as cancerous cases. After 
debris filtering, the average number of epithelial cells for 
noncancer (normal and prophylactic tissue) and negative 
cancer cases dropped by over an order of magnitude (9.18 
vs. 0.667 epithelial cells/mm 2 ) whereas the average for 
positive cancer cases dropped by less than a factor of 2 (34 
vs. 13.2 epithelial cells/mm 2 ). 

  Typically, filtering had a small impact on the cellular 
distributions of positive invasive cancer cases while clear-
ly eliminating areas with high debris on prophylactic and 
normal cases. Cellular density before and after filtering 
for a representative prophylactic case and a representative 
invasive ductal carcinoma (IDC) case are plotted in  fig-
ure 6 . For the prophylactic case, debris filtering most 
prominently removed areas along the edge of the slide 

where air bubbles trapped between the slide and coverslip 
along with nonspecific staining generated a large number 
of erroneous outlines. Manual inspection of the slide ver-
ified that the vast majority of erroneous outlines were 
screened out by the debris filters. For the IDC cases, de-
bris filtering removed approximately half of the initial 
outlined area, but the overall distribution of cells on the 
slide remained unchanged. While some weakly stained 
or poorly focused cells may be eliminated by debris filter-
ing, the overwhelming bias against noncellular artifacts 
greatly enhances analysis results.

  Epithelial Cell Density  
 For cancer cases, each case was determined to be either 

positive or negative based upon analysis by a pathologist. 
All prophylactic and breast reduction cases were consid-
ered to be part of the negative population. On average, the 
positive cancer cases were found to have 13.15 epithe-
lial cells/mm 2  while the negative cases only had 0.6677 
epithelial cells/mm 2  with standard deviations of 13.4 
(101.9%) and 0.5 (74.97%), respectively. The high degree 
of variability in the measurement of epithelial cell den-
sity made it unlikely to be a robust differentiator between 
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  Fig. 4.  Manual versus automated debris filtering. Automated de-
bris filters were tested against manual removal of debris on a data 
set encompassing a mixture of cancer and noncancer patients
(n = 34). Automated filtering matched the results of manual filter-
ing with a high correlation (0.93).                                  

0.5

2

8

32

128

0.0625 0.25 1 4 16 64

DCIS (–)

DCIS (+)

IDC (–)

IDC (+)

ILC (+)

Normal

Prophylactic

Ra
w

 e
pi

th
el

ia
l c

el
ls

/m
m

2

Filtered epithelial cells/mm2

  Fig. 5.  Cellular densities before and after debris filtering. Cellular 
density was compared before (raw epithelial cells/mm 2 ) and after 
(filtered epithelial cells/mm 2 ) automated debris filtering. For 
most cancer cases, debris filtering had a relatively small impact 
on cellularity while an up to 25 !  decrease was observed for non-
cancer cases. Several normal and prophylactic cases were found 
to have large amounts of dust, fibers, and nonspecific staining 
which resulted in high cellularity measurements before filtering. 
Automated filtering of image outlines eliminates false positives 
from noncellular debris on touch prep slides.                                  
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positive and negative cases; however, a 2-sided t test for 
unequal variances showed a significant difference be-
tween the 2 populations, with p  !  0.01. 

  Fractional Coverage  
 In order to increase the robustness of separating non-

cancer and negative cancer cases from positive cancer 
cases, an additional metric was calculated. Cancer cases 
exhibit a high density of epithelial cells across large frac-
tions of an imprint cytology slide surface;  figure 6  shows 
a representative IDC case where nearly half of the slide 
has a high density of epithelial cells. In contrast, noncan-
cer cases show only a few small regions with epithelial 
cells. The few epithelial cells present in benign cases re-
flect either capture of epithelial cells from a duct rup-
tured in surgery or possibly some debris missed by filter-
ing. To capture this 2-dimensional characteristic of the 
distribution of the epithelial cell density, several scalar 
metrics were tested. Calculating the percentage of images 

with a cellular density of at least 5 epithelial cells/mm 2  
provided the best scalar quantification of cellular distri-
bution across a whole slide. This distribution metric was 
found to be 35.9% on average for positive cancer cases and 
4.21% on average for noncancer and negative cancer cas-
es, with standard deviations of 0.168 (46.7%) and 0.0324 
(76.9%), respectively. A 2-sided t test for unequal vari-
ances was performed with p  !  0.001, revealing a highly 
significant difference between the positive and negative 
groups. 

  While neither metric on its own provides a perfect sep-
aration between the positive invasive cancers and non-
cancer and negative cancer populations, plotting both on 
a 2-dimensional graph ( fig. 7 ) shows a high degree of sep-
aration. Using discriminant analysis, an optimally sepa-
rating cutoff line can be drawn between the 2 populations 
 [34] . 

  Sensitivity, specificity, and accuracy results of the au-
tomated analysis are tabulated in  table 1 . Specificity was 

Prophylactic after filtering (1.65 epithelial cells/mm2)

Prophylactic before filtering (42.9 epithelial cells/mm2) IDC before filtering (66.2 epithelial cells/mm2)

IDC after filtering (33.8 epithelial cells/mm2)

Cells/mm2

3,000

1,100
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55

20
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  Fig. 6.  Cellular distributions for prophylactic and IDC samples 
before and after debris removal. The effect of debris filtering was 
investigated by plotting the cellular density of each image taken 
of a touch prep slide. A typical prophylactic case would be ex-
pected to show low cellularity; however, initial outlines indicate a 
falsely high cellular density along the edges of the slide (top left). 
After debris filtering had been performed, debris outlines along 

the edge of the slide were properly removed, resulting in a 25     !  
reduction in overall cellularity (bottom left). A typical IDC case 
showed highly dense clusters of cells in the middle of the slide (top 
right). After debris filtering, the cellular distribution on the slide 
remained unchanged while the overall cellularity dropped by 
only 2 !  (bottom right).                                  
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100% in all tissue types as no false positives were detect-
ed. Invasive cancers including invasive lobular carcino-
ma (ILC) and IDC (ILC + IDC, n = 20) were properly 
classified with a high degree of accuracy (94.4%), with a 
single case of IDC reported as a false negative. For the 
reported false-negative IDC case, local pathological eval-
uation revealed that IDC was present in only 1% of the 
frozen tissue section slide with a single cluster of cancer 
cells approximately 100 microns in length. Two cases of 
ductal carcinoma in situ (DCIS; n = 9) were reported as 
false negatives. In both of these cases, the pathologist 
found only a single focus of low-grade DCIS. The cellular 
density of all false-negative cases was too low to distin-
guish them from noncancer cases. Manual inspection of 
the slides for these cases confirmed that the slides con-
tained very few epithelial cells, thus indicating a limita-
tion of using epithelial cell counts as a marker for positive 
margins. 

  Discussion 

 Compared to previous results from Cortes-Mateos et 
al.  [13] , the accuracy of invasive cancer detection (IDC + 
ILC) by automated detection with debris filtering and lo-
cally calibrated samples increased from 80 to 95% and the 
accuracy of DCIS increased from 40 to 77.8% across a 
similar patient population  [13] . The increase in accuracy 
was achieved through the implementation of debris fil-

tering in conjunction with establishing a highly localized 
pathological review. In particular, automated debris fil-
tering made a significant contribution to the achievement 
of 100% specificity. Several would-be false-positive nor-
mal and prophylactic cases saw a significant reduction in 
the overall cellular density measurement ( fig. 7 ). Relative 
to Cortes-Mateos et al.  [13] , the establishment of local 
pathological analysis helped improve the sensitivity mea-
sures and validation of the technique. Since permanent 
section analysis was not performed on the tissue imme-
diately being sampled by imprint cytology in the previous 
study, it is likely that many of the imprint cytology sam-
ples did not actually sample cancerous tissue, thus over-
estimating the figures for false negatives. 

  The major source of error in this study was likely due 
to the difficulty of orienting imprint slides on the cross 
sections of small tumors where the foci of cancer were 
sometimes as small as a few hundred microns. For very 
small tumors inside large cross-sectional tissue samples, 
the cancer only occupied a small portion of the cross-
sectional tissue surface; it is likely that the cancer was 
subsequently missed during imprint cytology. Therefore, 
it is possible, for very small tumors, that the pathologist 
found cancer in parts of the cross sectional tissue sample 
which were not sampled by any imprint cytology slides. 

  These findings are consistent with previous studies us-
ing bright-field stains for manual intraoperative analysis 
of breast cancer surgical margins even though these stud-
ies relied upon the expertise of cytologists, including 

Table 1.  Summary of results

Type Counts 
(mean8SD)

False 
positives

False 
negatives

Sensitivity Specificity Accuracy

IDC 18 (3815) 0 1 93.8% 100% 94.4%
ILC 2 (082) 0 0 100% 100% 100%
Invasive (IDC + ILC) 20 (3817) 0 1 94.4% 100% 95%
DCIS 9 (485) 0 2 71.4% 100% 77.8%
All center 29 (7822) 0 3 85% 100% 89.7%
Normal 10 (1080) 0 0 100% 100% 100%
Prophylactic 8 (880) 0 0 100% 100% 100%
Noncancer (normal + prophylactic) 18 (1880) 0 0 100% 100% 100%
Cancer + noncancer 47 0 3 88% 100% 93.6%

S ensitivity, specificity, and accuracy were calculated for all di-
agnosis types. Cancer cases were counted as positive (+) if a pa-
thologist found any cancer in any frozen section or tissue cassette 
slides. Cancer cases were counted as negative (–) otherwise. No 
false positives were observed in either cancer or noncancer pa-

tients. Automated analysis reported 3 false negatives across all 
cancer cases. For each false negative, pathology found cancer in 
only a single focus which the presented technique, reliant upon 
high cellularity in detection, was insensitive to.
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manual analysis of cellular architecture and nuclear 
characteristics. Cox et al.  [35]  reported an accuracy of 
97.3% in manually assessing margin status across 162 cas-
es. Klimberg et al.  [36]  reported a manually accuracy of 
99.3% across 428 patients. However, England et al.  [37]  
and Saarela et al.  [38]  reported lower manual accuracies 
of 73 and 78%, respectively. With cytological evaluation 
experience being the likely differentiator in diagnostic 
success  [8] , the use of an automated analysis technique 
could further the ability to use imprint cytology intraop-
eratively in areas where expertise is unavailable. 

  Measurement of nuclear characteristics has long been 
used in the automated analysis of H&E-stained slides to 
differentiate between cancer and noncancer  [39, 40] . A 
similar approach is being tested to determine if using 
Hoechst dye could supplement the cellular density mea-
surements to increase accuracy for DCIS. In practice, the 
presented automated technique could be used intraop-
eratively to reduce the need for secondary surgeries. The 
initial preparation and scanning of the slides does not 
require the presence of a cytopathologist and, if neces-
sary, a pathologist could remotely review and confirm 
findings from the digital analysis. 

  Given that the overall automated analysis technique 
presented here is targeted towards intraoperative analy-
sis, acquisition time is a critical factor for feasibility. Cur-
rently, a typical slide requires 0.5 h to image, including 
setup time and 5 !  (1.267 um/pixel) scans. Scanning time 
can be significantly reduced by coupling a high-resolu-
tion camera with lower magnification objectives to re-
duce the number of images required to scan the same 
area. With a 16-megapixel camera, it is estimated that the 
total scanning time can be reduced to 10 min for the 1.267 
um/pixel imaging resolution. With higher speed imag-
ing, the imaging time will be the time-limiting factor. 
Recent work by Iwamoto et al.  [26]  showed that the anti-
body staining time can be reduced to 10 min. This is com-
petitive with the time required for intraoperative frozen 
section analysis. 

  Conclusion 

 This automated system in conjunction with intraop-
erative cytological imprints is a highly sensitive and spe-
cific method for the identification of breast cancer. Be-
cause of its rapid turnaround time, this method could in 
the future be applied to imprints of surgical margins and 
the identification of close or positive margins. The pre-
liminary information would assist in additional tissue re-
moval, if necessary, and significantly reduce the need to 
perform a second operation at a later time due to positive 
margins in the final pathology report. The lack of any 
false positives across the studied patient population is 
highly encouraging as usage of this technique should not 
lead to unnecessary removal of extra tissue or cause un-
necessary cosmetic deformity. Additionally, the nonde-
structive nature of imprint cytology preserves tissue for 
traditional permanent section analysis, ensuring a safety 
net for any false negatives. Use of the automated micros-
copy technique would ultimately decrease positive mar-
gins rates and the need for second operations in the treat-
ment of early stage breast cancer. This process would en-
tail coordination between the surgeon and pathologist to 
confirm the automated results and make sure proper 
sampling of the tumor surface was performed.
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  Fig. 7.  Two-dimensional discrimination for cancer detection. The 
% images  1 5 cells/mm 2  versus filtered epithelial cells/mm 2  is 
shown. Using 2 measurements produces a clear separation be-
tween positive cancer cases (data points with black outlines) and 
noncancer and negative cancer cases (normal, prophylactic, and 
nonoutlined data points); note that 0 false positives and only 3 
false negatives were observed. False negatives are the symbols out-
lined in black below the cutoff line.                                     
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